-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_COCO_metrice.py
28 lines (23 loc) · 955 Bytes
/
get_COCO_metrice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import argparse
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
#from tidecv import TIDE, datasets
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--anno_json', type=str, default='dataset/SSDD/ssdd_val.json', help='training model path')
parser.add_argument('--pred_json', type=str, default='runs/val/exp53/predictions.json', help='data yaml path')
return parser.parse_known_args()[0]
if __name__ == '__main__':
opt = parse_opt()
anno_json = opt.anno_json
pred_json = opt.pred_json
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
eval.evaluate()
eval.accumulate()
eval.summarize()
tide = TIDE()
tide.evaluate_range(datasets.COCO(anno_json), datasets.COCOResult(pred_json), mode=TIDE.BOX)
tide.summarize()
tide.plot(out_dir='result')