-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspace-rocks!.py
1073 lines (986 loc) · 47.1 KB
/
space-rocks!.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from direct.showbase.ShowBase import ShowBase
from panda3d.core import Geom, GeomNode, GeomVertexFormat, \
GeomVertexData, GeomTriangles, GeomVertexWriter, GeomVertexReader
from panda3d.core import NodePath
from panda3d.core import PointLight
from panda3d.core import *
from panda3d.core import VBase4, Vec3
from direct.task import Task
import sys
import random
import math
import collections
from opensimplex import OpenSimplex as opens
import time
from direct.gui.OnscreenText import OnscreenText
from direct.interval.IntervalGlobal import *
from direct.gui.DirectGui import (
DirectFrame,
DirectLabel,
DirectButton,
DirectWaitBar)
from direct.showbase.Loader import Loader
import webbrowser
#Gameplay variables
asteroid_spawn_distance = 3000000 # How close the asteroids spawn and how far away they will fly to
asteroid_min_spawn_distance = 100000
asteroid_detail = 36
asteroid_future_distance = asteroid_min_spawn_distance * 10 # How far the asteroid will travel
asteroid_total = []
extra_smallasteroids = []
extra_mediumasteroids = []
missle_total = []
pointball_total = []
asteroid_max = 250 # The maximum number of asteroids ***** MUST BE AN EVEN NUMBER and make sur eto modify loop_test_number global variable*****
spaceship_speed_x = 0
spaceship_speed_y = 0
spaceship_speed_z = 0
colors = {"orange": (.9,.6,.05,1),
"gray": (.1,.1,.1,1),
"black": (0,0,0,1),
"white": (1,1,1,1),
"white-transparent": (1,1,1,0.4),
"red": (0.4,0,0,0.4),
"red-transparent": (0.4,0,0,0.4),
"yellow-tinge": (1,1,0.8,1),
"yellow-tinge-transparent": (1,1,0.8,0.4),
"blue": (0, 0.8,1,1),
"blue-transparent": (0,0.6,0.8,0.3),
"lightblue-transparent": (0.6,0.6,0.8,0.3)}
asteroid_test_distance = asteroid_spawn_distance * (29.0 / 30.0) #The test distance. If asteroid greater than asteroid_test_distancem then it will be moved closer
score = 0 # Initialize score
fullscreen = False
Frames = False
test_max_min = [0,0,0,0]
max_player_speed = 300000
pointball_value = 0
title_screen = None
is_living = True
resolution = (800,600)
fog_quality = 0.000002
cursor_hidden = False
# Windows settings
loadPrcFileData('', 'window-title Space Rocks!')
thunderstrike = Loader.loadFont(0, "./Fonts/thunderstrike.ttf")
thunderstrike3d = Loader.loadFont(0, "./Fonts/thunderstrike3d.ttf")
class Begin(ShowBase):
def __init__(self):
global pointball_value
global title_screen
global loading_screen
# Basics
ShowBase.__init__(self)
#Setup the window
base.disableMouse()
render.setAntialias(AntialiasAttrib.MAuto)
self.set_windowsettings()
base.camLens.setFar(asteroid_spawn_distance * 100)
base.camLens.setNear(2000)
self.setBackgroundColor(colors.get("black"))
# Create the directional and ambient lights, and apply them to the world.
ambientLight = AmbientLight("ambientLight")
ambientLight.setColor((0.8, 0.8, 0.8, 1))
directionalLight = DirectionalLight("directionalLight")
directionalLight.setDirection(LVector3(0, 45, -45))
directionalLight.setColor((1, 1, 1, 1))
directionalLight.setShadowCaster(True)
render.setLight(render.attachNewNode(directionalLight))
render.setLight(render.attachNewNode(ambientLight))
# Create a black fog and apply it to the world.
self.fog = Fog('distanceFog')
self.fog.setColor(0, 0, 0)
self.fog.setExpDensity(fog_quality)
render.setFog(self.fog)
# Initialize Collisions
base.cTrav = CollisionTraverser()
base.cTrav.setRespectPrevTransform(True)
self.collHandEvent = CollisionHandlerEvent()
self.collHandEvent.addInPattern("%fn-into-%in")
# Add colision sphere to player for losing state
cNode = CollisionNode("player")
cNode.addSolid(CollisionSphere(0, 0, 0, 3))
self.player_np = base.camera.attachNewNode(cNode)
base.cTrav.addCollider(self.player_np, self.collHandEvent)
# Setup initial score
self.title = OnscreenText(text="Score: {0}".format(score),
parent=base.a2dTopLeft, scale=.07,
align=TextNode.ALeft, pos=(0.1,-0.1),
fg=(1, 1, 1, 1), shadow=(0, 0, 0, 0.5),
font=thunderstrike)
# Add Occluder Culling - I will need to figure this out later
# occluder_model = self.loader.loadModel("./Models/cone_10vert.egg")
# render.setOccluder(occluder_model)
Begin.keyMap = {
"forward": False, "strafe-left": False, "backward": False, "strafe-right": False, "strafe-up": False, "strafe-down": False, "roll-left": False, "roll-right": False
} #True if coresponding key is currently held down.
#Basic camera movement on the xyz coordinate plane
self.accept("escape", sys.exit)
self.accept("w", self.setKey, ["forward", True]) # Pressing the key down sets the state to true. Tasks will function as if pressing key each frame.
self.accept("w-up", self.setKey, ["forward", False]) # Releasing the key changes the key state in begin.keyMap to False to tasks will stop looping.
self.accept("a", self.setKey, ["strafe-left", True]) # Both previous comments apply to the following 'accept self.setKey' block of code.
self.accept("a-up", self.setKey, ["strafe-left", False])
self.accept("s", self.setKey, ["backward", True])
self.accept("s-up", self.setKey, ["backward", False])
self.accept("d", self.setKey, ["strafe-right", True])
self.accept("d-up", self.setKey, ["strafe-right", False])
self.accept("space", self.setKey, ["strafe-up", True])
self.accept("space-up", self.setKey, ["strafe-up", False])
self.accept("control", self.setKey, ["strafe-down", True])
self.accept("control-up", self.setKey, ["strafe-down", False])
self.accept("shift", self.setKey, ["strafe-down", True])
self.accept("shift-up", self.setKey, ["strafe-down", False])
self.accept("q", self.setKey, ["roll-left", True])
self.accept("q-up", self.setKey, ["roll-left", False])
self.accept("e", self.setKey, ["roll-right", True])
self.accept("e-up", self.setKey, ["roll-right", False])
self.accept('mouse1', self.shoot) # Shoots the projectile
self.accept('f11', self.fullscreenToggle)
self.accept('f12', self.framesToggle)
# Development keys
self.accept('0', self.stop_moving) # Stop moving
self.accept('1', self.angle1)
self.accept('2', self.angle2)
self.accept('3', self.angle3)
self.accept('4', self.angle4)
self.accept('5', self.angle5)
self.accept('6', self.angle6)
# Create the loading bar
self.loading = DirectFrame(
frameSize = (-10, 10, -10, 10),
frameColor = (0,0,0,1)
)
self.loading_bar = DirectWaitBar(
text="Generating Asteroids . . .",
text_font=thunderstrike,
text_fg=(0,0,0,1),
text_shadow=(1,1,1,1),
#text_pos=(0.001,0.001, -1),
value=50,
range=asteroid_max + (2 * int(asteroid_max * 0.05)),
barColor=(1,1,1,1),
frameColor=(0,0,0,0),
parent=self.loading
)
loading_screen = self.loading
loading_screen.loading_bar = self.loading_bar
# Create the main menu
self.quality_name = "Low"
self.quality_num = 1
self.quality_applied = 1
self.menu = DirectFrame(
frameSize = (10,-10,10,-10),
frameColor = (0, 0, 0, 1))
self.menu_title = DirectFrame(
frameSize = (base.a2dLeft, base.a2dRight, 0.55, 0.8),
frameTexture = loader.loadTexture("./Fonts/title.png"),
parent = self.menu
)
title_asteroid = Asteroid("small")
self.menu_asteroid = DirectFrame(
geom = title_asteroid.np,
geom_scale = (0.000008,0.000008,0.000008),
pos = (1.13,0,0.56),
frameColor = (0,0,0,1),
enableEdit = 1,
parent = self.menu_title
)
title_screen = self.menu
title_screen.menu_asteroid = self.menu_asteroid
title_screen.start_btn = self.createButton("Start", self.start_game, 0.2)
title_screen.how_to_btn = self.createButton("How to Play", self.how_to_play, 0)
title_screen.exit_btn = self.createButton("Quit", sys.exit, -0.2)
title_screen.res_apply_btn = self.createButton("Apply", self.apply_res_button, -0.4, 1, (-2,2.3,-0.6,1))
title_screen.res_apply_btn.hide()
title_screen.resolution_btn = self.createButton(f"Resolution ({resolution[0]} x {resolution[1]})", self.resolution, -0.4)
title_screen.fullscreen_btn = self.createButton("Toggle Fullscreen", self.fullscreenToggle, -0.6)
title_screen.quality_btn = self.createButton(f"Qualilty ({self.quality_name})", self.quality, -0.8)
title_screen.qual_apply_btn = self.createButton("Apply", self.apply_qual_button, -0.8, 1, (-2,2.3,-0.6,1))
title_screen.qual_apply_btn.hide()
taskMgr.add(Begin.menu, "Menu")
title_screen.hide()
# Setup game tasks and create the 3d asteroids.
taskMgr.add(Begin.createAsteroids, "Generate asteroids")
def createAsteroids(self):
global asteroid_max
global asteroid_total
global loading_screen
global title_screen
global base
if len(asteroid_total) < asteroid_max:
asteroid = Asteroid()
asteroid_total.insert(0,asteroid)
base.cTrav.addCollider(asteroid.c_np, base.collHandEvent)
asteroid.add_togame()
loading_screen.loading_bar["value"] += 1
return Task.cont
# Extra asteroids to be instantly available when asteroids break
if len(extra_smallasteroids) < int(asteroid_max * 0.05):
extra_smallasteroids.insert(0,Asteroid("small"))
extra_mediumasteroids.insert(0,Asteroid("medium"))
loading_screen.loading_bar["value"] += 1
return Task.cont
if len(extra_mediumasteroids) < int(asteroid_max * 0.05):
extra_mediumasteroids.insert(0,Asteroid("medium"))
loading_screen.loading_bar["value"] += 1
return Task.cont
print("did not return")
loading_screen.hide()
title_screen.show()
taskMgr.remove("Generate asteroids")
def start_game(self):
global pointball_value
global cursor_hidden
global is_living
self.accept("player-into-asteroid", self.end_game)
self.accept("player-into-pointball", self.score)
self.accept(f"missle-into-asteroid", self.shot_asteroid)
# Set mouse and display settings
self.lastMouseX, self.lastMouseY = 0, 0
cursor_hidden = True
self.set_windowsettings()
self.startTasks()
for asteroid in asteroid_total:
asteroid.asteroid_lerp.resume()
# Hide the main Menu
if not(is_living):
#taskMgr.add(self.score, "Score")
self.accept('mouse1', self.shoot)
base.camera.setPos(0,0,0)
taskMgr.remove("Death Spin")
title_screen.start_btn["text"] = ("Resume","Resume"," Resume!","Resume")
base.setBackgroundColor(0,0,0,1)
self.fog.setColor(0,0,0)
is_living = True
title_screen.hide()
# Change what the escape key does
self.accept("escape", self.pause)
pointball_value = int(time.time())
def pause(self):
global is_living
global score
global cursor_hidden
global spaceship_speed_x
global spaceship_speed_y
global spaceship_speed_z
pause_pointball_value = pointball_value
for asteroid in asteroid_total:
asteroid.asteroid_lerp.pause()
# Show + relase the mouse
title_screen.show()
cursor_hidden = False
self.set_windowsettings()
taskMgr.remove("Rotate player in hpr")
self.acceptOnce("escape", sys.exit)
# Change start button text relative to living state + remove death text if died
if is_living:
title_screen.start_btn["text"] = ("Resume","Resume"," Resume!","Resume")
else:
aspect2d.find("**/-TextNode").removeNode()
title_screen.start_btn["text"] = ("Retry","Retry"," Retry!","Retry")
spaceship_speed_x = 0
spaceship_speed_y = 0
spaceship_speed_z = 0
base.camera.setPos(0,0,0)
while len(asteroid_total) > asteroid_max:
del asteroid_total[0]
for asteroid in asteroid_total:
asteroid.asteroid_lerp.finish()
asteroid.add_togame()
score = 0
self.title = OnscreenText(text="Score: {0}".format(score),
parent=base.a2dTopLeft, scale=.07,
align=TextNode.ALeft, pos=(0.1,-0.1),
fg=(1, 1, 1, 1), shadow=(0, 0, 0, 0.5),
font=thunderstrike)
def quality(self):
qual_dict = {
# asteroid_number is chosen by 300 was found to be a good number when testing on a low spec machine. The larger ones keep the same density of asteroids as volume increases
1: {"quality": "Low", "asteroid_detail": 36, "fog_quality": 0.000001, "asteroid_spawn_distance": 3000000, "asteroid_number": 300},
2: {"quality": "Medium", "asteroid_detail": 30, "fog_quality": 0.0000008, "asteroid_spawn_distance": 4000000, "asteroid_number": 711},
3: {"quality": "High", "asteroid_detail": 20, "fog_quality": 0.0000006, "asteroid_spawn_distance": 5000000, "asteroid_number": 1389},
}
self.quality_num = self.quality_num + 1 if self.quality_num != 3 else 1
self.game_quality = qual_dict[self.quality_num]
self.quality_name = self.game_quality["quality"]
text = f"Quality ({self.quality_name})"
title_screen.quality_btn["text"] = (text, text, f" {text}!", text)
if self.quality_num != self.quality_applied:
title_screen.qual_apply_btn.show()
else:
title_screen.qual_apply_btn.hide()
def apply_qual_button(self):
global asteroid_detail
global fog_quality
global asteroid_future_distance
global asteroid_test_distance
global asteroid_max
global asteroid_total
global extra_smallasteroids
global extra_mediumasteroids
asteroid_detail = self.game_quality["asteroid_detail"]
fog_quality = self.game_quality["fog_quality"]
asteroid_spawn_distance = self.game_quality["asteroid_spawn_distance"]
asteroid_test_distance = asteroid_spawn_distance * (29.0 / 30.0)
asteroid_max = self.game_quality["asteroid_number"]
self.fog.setExpDensity(fog_quality)
self.quality_applied = self.quality_num
title_screen.qual_apply_btn.hide()
asteroid_total = []
extra_mediumasteroids = []
extra_smallasteroids = []
title_screen.hide()
loading_screen.loading_bar["value"] = 0
loading_screen.loading_bar["range"] = asteroid_max + (2 * int(asteroid_max * 0.05))
loading_screen.show()
taskMgr.add(Begin.createAsteroids, "Generate asteroids")
def resolution(self):
global resolution
res_list = [
# 4:3
(800,600),
(1024,768),
(1920,1440),
(4096,3071),
# 5:4
(1280,1024),
# 16:9
(1280,720),
(1366,768),
(1600,900),
(1920,1080),
(2560,1440),
(3840,2160),
(4096,2304),
#16:10
(1440,900),
(1680,1050),
(2304,1440),
(4096,2560),
# 21:9
(2160,1080),
(3440,1440)
]
index = res_list.index(resolution)
resolution = res_list[index + 1] if index < len(res_list) - 1 else res_list[0]
if base.getSize() == resolution:
title_screen.res_apply_btn.hide()
else:
title_screen.res_apply_btn.show()
text = f"Resolution ({resolution[0]} x {resolution[1]})"
title_screen.resolution_btn["text"] = (text, text, f" {text}!", text)
def apply_res_button(self):
title_screen.res_apply_btn.hide()
self.set_windowsettings()
def how_to_play(self):
webbrowser.open('https://github.com/13r0ck/3d-Space-Rocks-Simulator-2020')
def createButton(self, text, command, verticalPos, horisontalPos=0, frame_size=(-8,8,-0.6,1)):
btn = DirectButton(
text=(text, text, f" {text}!", text),
text_fg=(1,1,1,1),
pad=(0.7,0.3),
frameSize=frame_size,
frameTexture="./Images/Button_Frame.png",
relief=1,
text_font=thunderstrike,
text_scale=0.9,
scale = 0.1,
command = command,
pos = (horisontalPos,0, verticalPos),
textMayChange = 1
)
btn.reparentTo(self.menu)
return btn
def startTasks(self):
#The tasks below are the functions run every frame so the game will work
taskMgr.add(Begin.test_distance, "Test Distance")
taskMgr.add(self.mouseTask, "Rotate player in hpr")
taskMgr.add(Begin.spaceship_movement, "Move the Player in xyz")
taskMgr.add(Begin.remove_old_missles, "Remove old missles")
taskMgr.add(Begin.pointballManager, "Pointballs Manager")
def menu(self):
h,p,r = title_screen.menu_asteroid["geom_hpr"]
dt = globalClock.getDt()
title_screen.menu_asteroid["geom_hpr"] = LVecBase3f(h + 45 * dt, 0,0)
return Task.cont
##### // Key Press Functions \\ #####
def spaceship_movement(self):
global spaceship_speed_x
global spaceship_speed_y
global spaceship_speed_z
global max_player_speed
dt = globalClock.getDt()
# Move the player on the global axis. This is how momentum is not interupted
cam_pos_init = base.camera.getPos()
base.camera.setPos(cam_pos_init[0] + spaceship_speed_x * dt, # Spaceship X change per frame
cam_pos_init[1] + spaceship_speed_y * dt, # Spaceship Y change per frame
cam_pos_init[2] + spaceship_speed_z * dt) # " Z " " "
# Ff a key is pressed, then we will need to do other calulations this frame.
if Begin.keyMap["forward"] or Begin.keyMap["backward"] or Begin.keyMap["strafe-left"] or Begin.keyMap["strafe-right"] or Begin.keyMap["strafe-up"] or Begin.keyMap["strafe-down"]:
local_x, local_y, local_z = 0, 0, 0
cam_pos1 = base.camera.getPos()
# Add aribitraty movement on the local axis relative to the key pressed.
if Begin.keyMap["forward"]:
local_x += 3000 * dt
if Begin.keyMap["backward"]:
local_x -= 3000 * dt
if Begin.keyMap["strafe-right"]:
local_y += 3000 * dt
if Begin.keyMap["strafe-left"]:
local_y -= 3000 * dt
if Begin.keyMap["strafe-up"]:
local_z += 3000 * dt
if Begin.keyMap["strafe-down"]:
local_z -= 3000 * dt
base.camera.setPos(base.camera, local_y, local_x, local_z)
cam_pos2 = base.camera.getPos()
#Calculate the global velocity change from the local change
# Note: dv_xyz delta velocity xyz
dv_xyz = []
dv_xyz = [(cam_pos2[i] - cam_pos1[i]) / dt for i in range(0,3)]
# Calcualte the magnitude to limit player speed
mag = math.sqrt((spaceship_speed_x)**2 + (spaceship_speed_y)**2 + (spaceship_speed_z)**2)
if mag < max_player_speed:
spaceship_speed_x += dv_xyz[0]
spaceship_speed_y += dv_xyz[1]
spaceship_speed_z += dv_xyz[2]
else:
possible_x, possible_y, possible_z = spaceship_speed_x, spaceship_speed_y, spaceship_speed_z
possible_x += dv_xyz[0]
possible_y += dv_xyz[1]
possible_z += dv_xyz[2]
possible_mag = math.sqrt((possible_x)**2 + (possible_y)**2 + (possible_z)**2)
if possible_mag < mag:
spaceship_speed_x += dv_xyz[0]
spaceship_speed_y += dv_xyz[1]
spaceship_speed_z += dv_xyz[2]
# Separate from the top movement. Allow for camera rotation
if Begin.keyMap["roll-left"]:
camera_r = base.camera.getR()
base.camera.setR(camera_r - 1)
if Begin.keyMap["roll-right"]:
camera_r = base.camera.getR()
base.camera.setR((camera_r + 1))
return Task.cont
def shoot(self):
missle = Missle()
base.cTrav.addCollider(missle.c_np, self.collHandEvent)
def do_null(self):
# Redefine the accept key to this to ignore key
pass
##### // Tasks \\ #####
def score(self, collision_entry):
global score
global thunderstrike
pointball = collision_entry.getIntoNodePath().parent
score += int(pointball.getTag("value"))
render.clearLight(pointball.find("**/plight"))
pointball.removeNode()
self.title.clearText()
self.title = OnscreenText(text="Score: {0}".format(score),
parent=base.a2dTopLeft, scale=.07,
align=TextNode.ALeft, pos=(0.1,-0.1),
fg=(1, 1, 1, 1), shadow=(0, 0, 0, 0.5),
font=thunderstrike)
return Task.cont
# Test the distance of all asteroids. If the asteroid is too far away turn it around.
def test_distance(self):
global asteroid_max
global asteroid_test_distance
for asteroid in asteroid_total:
if asteroid.ttl > 0:
asteroid.ttl -= globalClock.getDt()
else:
asteroid_xyz = asteroid.np.getPos()
camera_xyz = base.camera.getPos()
distance = math.sqrt((asteroid_xyz[0] - camera_xyz[0])**2 + (asteroid_xyz[1] - camera_xyz[1])**2 + (asteroid_xyz[2] - camera_xyz[2])**2) # Distance formula
if distance > asteroid_test_distance:
start_point = asteroid.get_sphere_points(asteroid_spawn_distance, base.camera)
asteroid.asteroid_lerp.finish()
asteroid.asteroid_path(start_point) #move to sphere relative to camera
asteroid.ttl = 1
#asteroid.c_np.show()
return Task.cont
def mouseTask(self, task):
global test_max_min
dt = globalClock.getDt()
# h_max : h_min , p_max : p_min
mw = self.mouseWatcherNode
if mw.hasMouse():
# get the window manager's idea of the mouse position
x, y = mw.getMouseX(), mw.getMouseY()
if self.lastMouseX is not None:
dx, dy = x - self.lastMouseX, y - self.lastMouseY
else:
# no data to compare with yet
dx, dy = 0, 0
self.lastMouseX, self.lastMouseY = x, y
else:
x, y, dx, dy = 0, 0, 0, 0
self.win.movePointer(0,
int(self.win.getProperties().getXSize() / 2),
int(self.win.getProperties().getYSize() / 2))
self.lastMouseX, self.lastMouseY = 0, 0
# scale position and delta to pixels for user
w, h = self.win.getSize()
# rotate camera by delta
base.camera.setH(base.camera, dx * -800 * dt)
base.camera.setP(base.camera, dy * 800 * dt)
return Task.cont
def remove_old_missles(self):
global missle_total
dt = globalClock.getDt() # delta t per frame
for missle in missle_total:
if missle.ttl <= 0:
render.clearLight(missle.plnp)
missle.core.removeNode()
else:
missle.ttl -= dt
return Task.cont
def pointballManager(self):
global pointball_total
dt = globalClock.getDt() # delta t per frame
for pointball in pointball_total:
# Animate the size
scale_xyz = pointball.one.getScale()
time = pointball.ttl_max - pointball.ttl
dampened_cos = pointball.max_size * math.exp(0.36 * -time) * math.cos(0.5 * math.pi * time)
dampened_sin = pointball.max_size * math.exp(0.36 * -time) * math.sin(0.5 * math.pi * time)
pointball.one.setScale(dampened_cos, dampened_cos, dampened_cos)
pointball.two.setScale(dampened_sin, dampened_sin, dampened_sin)
# Move towards player if in range
try:
if pointball.center.getDistance(base.camera) < pointball.attraction_distance:
cam_2_ball = pointball.center.getPos(base.camera)
total = cam_2_ball[0] + cam_2_ball[1] + cam_2_ball[2]
percent_xyz = [cam_2_ball[i] / total for i in range(0, 3)]
pointball.center.setPos(base.camera,
cam_2_ball[0] - 20000 * percent_xyz[0],
cam_2_ball[1] - 20000 * percent_xyz[1],
cam_2_ball[2] - 20000 * percent_xyz[2])
except:
pass
# Remove Old PointBalls
if pointball.ttl <= 0:
render.clearLight(pointball.plnp)
pointball.center.removeNode()
else:
pointball.ttl -= dt
#for index in range(0,len(pointball_total)- 1):
# if pointball_total[index].ttl <= 0:
# del pointball_total[index]
return Task.cont
def death_task(self):
camera_hpr = base.camera.getHpr()
dt = globalClock.getDt()
h_speed = float(base.camera.getTag("h_speed"))
p_speed = float(base.camera.getTag("p_speed"))
r_speed = float(base.camera.getTag("r_speed"))
base.camera.setHpr(camera_hpr[0] + h_speed *dt, camera_hpr[1] + p_speed *dt, camera_hpr[2] + r_speed *dt)
base.camera.setX(base.camera.getX() + 4000 *dt)
return Task.cont
##### // Colision Functions \\ #####
def shot_asteroid(self, collision_entry):
global score_list
global pointball_total
global pointball_value
#Remove the missle
missle = collision_entry.getFromNodePath()
try:
render.clearLight(missle.parent.find("**/plight"))
except:
pass
missle.removeNode()
# Gather large asteroid info so still accesable after deleted
# Note: na is short for "new_asteroid", has is "hit_asteroid_size"
hit_asteroid = collision_entry.getIntoNodePath()
hap = hit_asteroid.parent.getPos()
has = hit_asteroid.parent.getTag("size")
# Remove asteroid from list
for index in range(0,len(asteroid_total) -1):
if asteroid_total[index].name == hit_asteroid.name:
del asteroid_total[index]
break
# Delete before smaller asteoids are created to allow for asteroid-into-asteroid collisions
hit_asteroid.parent.removeNode()
# If small asteroid, just delete, if not create two of smaller size
if not(has == "small"):
# Generate 2 asteroids at oposite poistions (shimmy) within the larger asteoid, and oposite directions
for index in range(0,2):
na = extra_smallasteroids.pop() if has == "medium" else extra_mediumasteroids.pop()
# First asteroid can be random pos & direction
if index == 0:
shimmy = [na.radius * random.randrange(-1,2,2), na.radius * random.randrange(-1,2,2), na.radius * random.randrange(-1,2,2)]
spawn_point = [hap[0] + shimmy[0], hap[1] + shimmy[1], hap[2] + shimmy[2]]
future_location = False
# Second asteroid should be oposite pos & direction of asteroid 1
else:
spawn_point = [hap[0] + shimmy[0] * -1, hap[1] + shimmy[1] * -1, hap[2] + shimmy[2] * -1]
future_location = LPoint3(future_location[0] * -1, future_location[1] * -1, future_location[2] * -1)
# Add asteroid to the game. This code is the same for both asteroids
pl3_spawn = LPoint3(spawn_point[0], spawn_point[1], spawn_point[2])
na.add_togame(pl3_spawn, future_location)
na.np.setTag("Created", "True")
future_location = na.future_location
base.cTrav.addCollider(na.c_np, self.collHandEvent)
asteroid_total.append(na)
# Create more asteroid for the ones we just deleted
for i in range(0,2):
if na.size == "small":
extra_smallasteroids.insert(0,Asteroid("small"))
else:
extra_mediumasteroids.insert(0,Asteroid("medium"))
else:
# Create the point ball
current_time = int(time.time())
new_pointball_value = max(100 - (current_time - pointball_value), 20)
pointball = PointBall(hap, new_pointball_value)
pointball_total.append(pointball)
pointball_value = current_time
base.cTrav.addCollider(pointball.c_np, self.collHandEvent)
# Add a new asteroid to the scene to
asteroid = Asteroid()
asteroid_total.insert(0, asteroid)
base.cTrav.addCollider(asteroid.c_np, self.collHandEvent)
asteroid.add_togame(asteroid.get_sphere_points(asteroid_spawn_distance, base.camera))
def end_game(self, collision_entry):
global is_living
global fog_quality
is_living = False
asteroid = collision_entry.getIntoNodePath()
# Make the world red
self.fog.setColor(0.5,0,0)
self.fog.setExpDensity(fog_quality)
self.setBackgroundColor(0.5,0,0,1)
# Set random spin upon death. This is called in the death_task
base.camera.setTag("h_speed", str(random.randrange(0,10)))
base.camera.setTag("p_speed", str(random.randrange(0,10)))
base.camera.setTag("r_speed", str(random.uniform(0,5)))
# Stop unused tasks in death
taskMgr.remove("Rotate player in hpr")
taskMgr.remove("Score")
taskMgr.remove("Move the Player in xyz")
self.accept('mouse1', self.do_null)
# Move player and look so player gets to see their killer
base.camera.setX(base.camera.getX() + int(asteroid.parent.getTag("radius")) * 2)
base.camera.lookAt(asteroid)
# Start the death spiral + death text
taskMgr.add(Begin.death_task, "Death Spin")
self.death_text = OnscreenText(text="Your Spaceship has Crashed !\nPress [Escape]",
font=thunderstrike,
parent=base.aspect2d, scale=0.1,
align=TextNode.ACenter, pos=(0,0),
fg=(1, 1, 1, 1), shadow=(0, 0, 0, 0.5))
self.death_text.reparentTo(aspect2d)
##### // Developement Functions \\ #####
def stop_moving(self):
global spaceship_speed_x
global spaceship_speed_y
global spaceship_speed_z
spaceship_speed_x = 0
spaceship_speed_y = 0
spaceship_speed_z = 0
print(f"camera hpr {base.camera.getHpr()}")
print(f"camera pos {base.camera.getPos()}")
def angle1(self):
print("0,0,0")
base.camera.setHpr(0,0,0)
def angle2(self):
print("90,0,0")
base.camera.setHpr(90,0,0)
def angle3(self):
print("180,0,0")
base.camera.setHpr(180,0,0)
def angle4(self):
print("270,0,0")
base.camera.setHpr(270,0,0)
def angle5(self):
print("0,-90,0")
base.camera.setHpr(0,90,0)
def angle6(self):
print("0,90,0")
print(base.camera.getHpr())
base.camera.setHpr(0,-90,0)
##### // Misc Functions \\ #####
def setKey(self, key, value):
self.keyMap[key] = value
def fullscreenToggle(self):
global fullscreen
global Frames
if (not(fullscreen)):
fullscreen = True
self.set_windowsettings()
else:
fullscreen = False
self.set_windowsettings()
def set_windowsettings(self, reset_window=False):
global fullscreen
global cursor_hidden
wp = WindowProperties()
wp.setCursorHidden(cursor_hidden)
base.setFrameRateMeter(Frames)
wp.setFullscreen(fullscreen)
wp.setSize(resolution)
self.win.requestProperties(wp)
if cursor_hidden:
wp.setMouseMode(WindowProperties.M_relative)
else:
wp.setMouseMode(0)
if reset_window:
base.openMainWindow()
base.graphicsEngine.openWindows()
def framesToggle(self):
global Frames
if(Frames):
base.setFrameRateMeter(False)
Frames = False
else:
base.setFrameRateMeter(True)
Frames = True
def translate(self, value, leftMin, leftMax, rightMin, rightMax):
# Scale value from input range to output range
leftSpan = leftMax - leftMin
rightSpan = rightMax - rightMin
valueScaled = float(value - leftMin) / float(leftSpan)
return rightMin + (valueScaled * rightSpan)
class Asteroid(object):
def __init__(self, size=False):
global asteroid_detail
types = {"large": {"radius": 50000, "darkest_gray": 0.5, "lightest_gray": 0.8, "speed": 9000, "speed_percent": 5},
"medium": {"radius": 30000, "darkest_gray": 0.6, "lightest_gray": 0.8, "speed": 180, "speed_percent": 10},
"small": {"radius": 10000, "darkest_gray": 0.6, "lightest_gray": 0.8, "speed": 90, "speed_percent": 20}}
# Variables needed for the size given
self.size = random.choice(["small","medium","large"]) if not(size) else size
self.radius = types[self.size]["radius"]
self.darkest_gray = types[self.size]["darkest_gray"]
self.lightest_gray = types[self.size]["lightest_gray"]
self.speed = types[self.size]["speed"]
self.speed_percent = types[self.size]["speed_percent"]
self.step = asteroid_detail
self.seed = int(time.time() * 10000000)
self.ttl = 1 # time to live before getting distance tested
self.asteroid_min = self.radius
self.asteroid_max = self.radius + (self.radius / 2)
self.name = f"{self.size}_{self.seed}"
# Procedurally generate the asteroid
self.map = self.create_map(self.radius)
geom = self.create_geom(self.radius)
self.np = NodePath(geom)
# NodePath tags used later, particulary in the collision functions
self.np.setTag("size", self.size)
self.np.setTag("radius", str(self.radius))
self.np.setTag("Created", "False")
self.np.setTag("Name", self.name)
# Create and add the colision mesh to the asteroid
cNode = CollisionNode("asteroid")
cNode.addSolid(CollisionSphere(0,0,0,self.radius + (self.radius / 4)))
self.c_np = self.np.attachNewNode(cNode)
def add_togame(self, spawn_location=False, future_location=False):
# Set spawn location + final location + animation between the two
if spawn_location:
self.asteroid_path(spawn_location, future_location)
else:
spawn_distance = self.translate((random.random() ** 0.5),0,1,asteroid_min_spawn_distance, asteroid_spawn_distance)
self.asteroid_path(self.get_sphere_points(spawn_distance), future_location)
# Show the asteorid to the player
self.np.reparent_to(render)
def create_geom(self, sidelength):
# Set up the vertex arrays
vformat = GeomVertexFormat.getV3n3c4()
vdata = GeomVertexData("Data", vformat, Geom.UHDynamic)
vertex = GeomVertexWriter(vdata, 'vertex')
normal = GeomVertexWriter(vdata, 'normal')
color = GeomVertexWriter(vdata, 'color')
geom = Geom(vdata)
# Write vertex data
# Vertex data for the poles needs to be different
for key , value in self.map.items():
v_x, v_y, v_z, asteroid_color = value
n_x, n_y, n_z = 1,1,1
#c_r, c_g, c_b, c_a = asteroid_color, asteroid_color, asteroid_color, 1
c_r, c_g, c_b, c_a = asteroid_color, asteroid_color, asteroid_color, 1
vertex.addData3f(v_x, v_y, v_z)
normal.addData3f(n_x, n_y, n_z)
color.addData4f(c_r, c_g, c_b, c_a)
#Create triangles
#top of sphere
verts_per_row = int(360 / self.step) + 1
for vert in range(1,verts_per_row + 1):
tris = GeomTriangles(Geom.UHStatic)
tris.addVertices(vert + 1, 0, vert)
tris.closePrimitive()
geom.addPrimitive(tris)
#middle of shpere
for row in range(1, int(180 / self.step) - 1):
for vert_iir in range(0, verts_per_row - 1): # vert_iir = vertex index in row, not vertex number
vert_number = verts_per_row * row + vert_iir + 1
vert_up_row = vert_number - verts_per_row
#Bottom Triangle in the sphere
tris = GeomTriangles(Geom.UHStatic)
tris.add_vertices(vert_up_row, vert_number, vert_up_row + 1)
tris.close_primitive()
geom.addPrimitive(tris)
#Top triangle of square
tris = GeomTriangles(Geom.UHStatic)
tris.add_vertices(vert_number + 1, vert_up_row + 1, vert_number)
tris.close_primitive()
geom.addPrimitive(tris)
#bottom of sphere
last_vert = len(self.map) - 1
for vert in range(last_vert - verts_per_row, last_vert):
tris = GeomTriangles(Geom.UHStatic)
tris.add_vertices(vert - 1, last_vert, vert)
tris.close_primitive()
geom.addPrimitive(tris)
# Create the actual node
node = GeomNode('geom_node')
node.addGeom(geom)
return node
def translate(self, value, leftMin, leftMax, rightMin, rightMax):
# Scale value from input range to output range
leftSpan = leftMax - leftMin
rightSpan = rightMax - rightMin
valueScaled = float(value - leftMin) / float(leftSpan)
return rightMin + (valueScaled * rightSpan)
def simplex_radius(self, radius, seed, xoff, yoff, zoff):
noise = opens(seed=seed)
return self.translate(noise.noise3d(xoff,yoff,zoff),0,1,self.asteroid_min, self.asteroid_max)
#return radius
#map for most of the sphere
def create_map(self, radius):
map = collections.OrderedDict()
for x in range(0, 181, self.step):
#Top/Bottom of sphere need to be single points
if x == 0:
point_radius = self.simplex_radius(radius, self.seed, 0, 0, 1)
map[(0,0)] = (0,0,point_radius, (self.translate(point_radius, self.asteroid_min, self.asteroid_max, self.darkest_gray, self.lightest_gray)))
elif x == 180:
point_radius = -(self.simplex_radius(radius, self.seed, 0, 0, -1))
map[(180,0)] = (0,0,point_radius, (self.translate(point_radius, -self.asteroid_min, -self.asteroid_max, self.darkest_gray, self.lightest_gray)))
#The rest of the sphere
else:
for y in range(0, 361, self.step):
phi = x * (math.pi / 180.)
theta = y * (math.pi / 180.)
xoff = math.sin(phi) * math.cos(theta)
yoff = math.sin(phi) * math.sin(theta)
zoff = math.cos(phi)
point_radius = self.simplex_radius(radius, self.seed, xoff, yoff, zoff)
v_x = point_radius * xoff
v_y = point_radius * yoff
v_z = point_radius * zoff
map[(x ,y)] = (v_x, v_y, v_z, (self.translate(point_radius, self.asteroid_min, self.asteroid_max, self.darkest_gray, self.lightest_gray)))
return map
def asteroid_path(self, start_point, future_location=False): #takes starting location (start_point must be a LPoint3)
# Create and run the asteroid animation
if not(future_location):
self.future_location = self.get_sphere_points(asteroid_future_distance, base.camera)
else:
self.future_location = future_location
self.asteroid_lerp = LerpPosInterval(self.np, # Object being manipulated. The asteroid in this case.
self.speed * random.randrange(1, self.speed_percent, 1), # How fast the asteroid will move in seconds
self.future_location, # future location at end of lerp
start_point, # The start position of the asteroid
fluid=1)
self.asteroid_lerp.start()
def get_sphere_points(self, radius, relative_to=False): #returns a LPoint3 in sphere. relative_to will return global LPoint3 realtive to given object.
phi = random.uniform(math.pi / 4,2*math.pi)
theta = random.uniform(math.pi / 4,2*math.pi)
if relative_to:
rel_xyz = relative_to.getPos()
x = radius * math.cos(phi) * math.sin(theta) + rel_xyz[0]
y = radius * math.sin(phi) * math.sin(theta) + rel_xyz[1]
z = radius * math.cos(theta) + rel_xyz[2]
else:
x = radius * math.cos(phi) * math.sin(theta)
y = radius * math.sin(phi) * math.sin(theta)
z = radius * math.cos(theta)
return LPoint3(x,y,z)
class Location(object): # Create child of asteroid to find the future position the asteroid will fly to
def __init__(self, asteroid_parent, distance=asteroid_future_distance):
self.obj = loader.loadModel("./Models/sphere.egg")
#dt = globalClock.getDt()
self.obj.setPos(asteroid_parent, 0,distance,0)
#self.obj.setPos(asteroid_parent, spaceship_speed_x *dt, spaceship_speed_y *dt + distance, spaceship_speed_z * dt)
class Missle(object):
def __init__(self):
camera_hpr = base.camera.getHpr()
self.name = "missle"
self.core = loader.loadModel("./Models/sphere.egg")
self.ttl = 2 # Time to live in seconds
self.core.setPos(base.camera, (0,0,0))
self.core.setHpr(camera_hpr)
self.core.setScale(600,600,600)
self.glow = loader.loadModel("./Models/sphere.egg")
self.core.setTransparency(TransparencyAttrib.MAlpha)
self.glow.setScale(2,2,2)
self.glow.reparentTo(self.core)
self.core.setColor(colors.get("white"))
self.glow.setColor(colors.get("white-transparent"))
self.glow.setPos(0,0,0) #relative to parent
self.core.setLightOff() # remove all other lights from missle so it is a bright white
missle_total.append(self)
#Create the light so the missle glows
plight = PointLight('plight')
plight.setColor(colors.get("white"))