forked from vanderschaarlab/clairvoyance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_api_prediction.py
310 lines (252 loc) · 12.4 KB
/
main_api_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""Main function for time-series prediction.
Pipeline
Step 1: Load dataset
- data_name: mimic, ward, cf
Step 2: Preprocess dataset
(0) NegativeFilter: Replace negative values to NaN
(1) OneHotEncoder: One hot encoding certain features
(2) Normalization (3 options): MinMax, Standard, None
Step 3: Define problem
- problem: one-shot or online
- label_name: the column name for the label(s)
- max_seq_len: maximum sequence length after padding
- treatment: the column name for treatments
Step 4: Impute dataset
(0) Static imputation (6 options): mean, median, mice, missforest, knn, gain
(1) Temporal imputation (8 options): mean, median, linear, quadratic, cubic, spline, mrnn, tgain
Step 5: Feature selection
- feature selection method (5 options): greedy-addition, greedy-deletion, recursive-addition, recursive-deletion, None
Step 6: Fit and Predict
- predictive models (6 options): lstm, gru, rnn, attention, tcn, transformer
Step 7: Estimate uncertainty (1 option)
Step 8: Interpret predictions (1 option)
Step 9: Visualize Results
- metric_name (4 options): auc, apr, mse, mae
(1) Visualize the performance
(2) Visualize the predictions
(3) Visualize the uncertainty
(4) Visualize the interpratations
"""
# Necessary packages
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import warnings
warnings.filterwarnings("ignore")
import sys
sys.path.append("../")
from datasets import CSVLoader
from preprocessing import FilterNegative, OneHotEncoder, Normalizer, ProblemMaker
from imputation import Imputation
from feature_selection import FeatureSelection
from prediction import prediction
from uncertainty import uncertainty
from interpretation import interpretation
from evaluation import Metrics
from evaluation import print_performance, print_prediction, print_uncertainty, print_interpretation
from utils import PipelineComposer
def main(args):
"""Main function for time-series prediction.
Args:
- data loading parameters:
- data_names: mimic, ward, cf
- preprocess parameters:
- normalization: minmax, standard, None
- one_hot_encoding: input features that need to be one-hot encoded
- problem: 'one-shot' or 'online'
- 'one-shot': one time prediction at the end of the time-series
- 'online': prediction at every time stamps of the time-series
- max_seq_len: maximum sequence length after padding
- label_name: the column name for the label(s)
- treatment: the column name for treatments
- imputation parameters:
- static_imputation_model: mean, median, mice, missforest, knn, gain
- temporal_imputation_model: mean, median, linear, quadratic, cubic, spline, mrnn, tgain
- feature selection parameters:
- feature_selection_model: greedy-addition, greedy-deletion, recursive-addition, recursive-deletion, None
- feature_number: selected feature number
- predictor_parameters:
- model_name: rnn, gru, lstm, attention, tcn, transformer
- model_parameters: network parameters such as number of layers
- h_dim: hidden dimensions
- n_layer: layer number
- n_head: head number (only for transformer model)
- batch_size: number of samples in mini-batch
- epochs: number of epochs
- learning_rate: learning rate
- static_mode: how to utilize static features (concatenate or None)
- time_mode: how to utilize time information (concatenate or None)
- task: classification or regression
- uncertainty_model_name: uncertainty estimation model name (ensemble)
- interpretation_model_name: interpretation model name (tinvase)
- metric_name: auc, apr, mae, mse
"""
#%% Step 0: Set basic parameters
metric_sets = [args.metric_name]
metric_parameters = {"problem": args.problem, "label_name": [args.label_name]}
#%% Step 1: Upload Dataset
# File names
data_directory = "../datasets/data/" + args.data_name + "/" + args.data_name + "_"
data_loader_training = CSVLoader(
static_file=data_directory + "static_train_data.csv.gz",
temporal_file=data_directory + "temporal_train_data_eav.csv.gz",
)
data_loader_testing = CSVLoader(
static_file=data_directory + "static_test_data.csv.gz",
temporal_file=data_directory + "temporal_test_data_eav.csv.gz",
)
dataset_training = data_loader_training.load()
dataset_testing = data_loader_testing.load()
print("Finish data loading.")
#%% Step 2: Preprocess Dataset
# (0) filter out negative values (Automatically)
negative_filter = FilterNegative()
# (1) one-hot encode categorical features
onehot_encoder = OneHotEncoder(one_hot_encoding_features=[args.one_hot_encoding])
# (2) Normalize features: 3 options (minmax, standard, none)
normalizer = Normalizer(args.normalization)
filter_pipeline = PipelineComposer(negative_filter, onehot_encoder, normalizer)
dataset_training = filter_pipeline.fit_transform(dataset_training)
dataset_testing = filter_pipeline.transform(dataset_testing)
print("Finish preprocessing.")
#%% Step 3: Define Problem
problem_maker = ProblemMaker(
problem=args.problem, label=[args.label_name], max_seq_len=args.max_seq_len, treatment=args.treatment
)
dataset_training = problem_maker.fit_transform(dataset_training)
dataset_testing = problem_maker.fit_transform(dataset_testing)
print("Finish defining problem.")
#%% Step 4: Impute Dataset
static_imputation = Imputation(imputation_model_name=args.static_imputation_model, data_type="static")
temporal_imputation = Imputation(imputation_model_name=args.temporal_imputation_model, data_type="temporal")
imputation_pipeline = PipelineComposer(static_imputation, temporal_imputation)
dataset_training = imputation_pipeline.fit_transform(dataset_training)
dataset_testing = imputation_pipeline.transform(dataset_testing)
print("Finish imputation.")
#%% Step 5: Feature selection (4 options)
static_feature_selection = FeatureSelection(
feature_selection_model_name=args.static_feature_selection_model,
feature_type="static",
feature_number=args.static_feature_selection_number,
task=args.task,
metric_name=args.metric_name,
metric_parameters=metric_parameters,
)
temporal_feature_selection = FeatureSelection(
feature_selection_model_name=args.temporal_feature_selection_model,
feature_type="temporal",
feature_number=args.temporal_feature_selection_number,
task=args.task,
metric_name=args.metric_name,
metric_parameters=metric_parameters,
)
feature_selection_pipeline = PipelineComposer(static_feature_selection, temporal_feature_selection)
dataset_training = feature_selection_pipeline.fit_transform(dataset_training)
dataset_testing = feature_selection_pipeline.transform(dataset_testing)
print("Finish feature selection.")
#%% Step 6: Fit and Predict (6 options)
# Set predictor model parameters
model_parameters = {
"h_dim": args.h_dim,
"n_layer": args.n_layer,
"n_head": args.n_head,
"batch_size": args.batch_size,
"epoch": args.epochs,
"model_type": args.model_name,
"learning_rate": args.learning_rate,
"static_mode": args.static_mode,
"time_mode": args.time_mode,
"verbose": True,
}
# Set the validation data for best model saving
dataset_training.train_val_test_split(prob_val=0.2, prob_test=0.0)
pred_class = prediction(args.model_name, model_parameters, args.task)
pred_class.fit(dataset_training)
test_y_hat = pred_class.predict(dataset_testing)
print("Finish predictor model training and testing.")
#%% Step 7: Estimate Uncertainty (1 option)
uncertainty_model = uncertainty(args.uncertainty_model_name, model_parameters, pred_class, args.task)
uncertainty_model.fit(dataset_training)
test_ci_hat = uncertainty_model.predict(dataset_testing)
print("Finish uncertainty estimation")
#%% Step 8: Interpret Predictions (1 option)
interpretor = interpretation(args.interpretation_model_name, model_parameters, pred_class, args.task)
interpretor.fit(dataset_training)
test_s_hat = interpretor.predict(dataset_testing)
print("Finish model interpretation")
#%% Step 9: Visualize Results
idx = np.random.permutation(len(test_y_hat))[:2]
# Evaluate predictor model
result = Metrics(metric_sets, metric_parameters).evaluate(dataset_testing.label, test_y_hat)
print("Finish predictor model evaluation.")
# Visualize the output
# (1) Performance
print("Overall performance")
print_performance(result, metric_sets, metric_parameters)
# (2) Predictions
print("Each prediction")
print_prediction(test_y_hat[idx], metric_parameters)
# (3) Uncertainty
print("Uncertainty estimations")
print_uncertainty(test_y_hat[idx], test_ci_hat[idx], metric_parameters)
# (4) Model interpretation
print("Model interpretation")
print_interpretation(test_s_hat[idx], dataset_training.feature_name, metric_parameters, model_parameters)
return
#%%
if __name__ == "__main__":
# Inputs for the main function
parser = argparse.ArgumentParser()
parser.add_argument("--data_name", choices=["mimic", "ward", "cf"], default="cf", type=str)
parser.add_argument("--normalization", choices=["minmax", "standard", None], default="minmax", type=str)
parser.add_argument("--one_hot_encoding", default="admission_type", type=str)
parser.add_argument("--problem", choices=["online", "one-shot"], default="one-shot", type=str)
parser.add_argument("--max_seq_len", help="maximum sequence length", default=24, type=int)
parser.add_argument("--label_name", default="death", type=str)
parser.add_argument("--treatment", default=None, type=str)
parser.add_argument(
"--static_imputation_model",
choices=["mean", "median", "mice", "missforest", "knn", "gain"],
default="median",
type=str,
)
parser.add_argument(
"--temporal_imputation_model",
choices=["mean", "median", "linear", "quadratic", "cubic", "spline", "mrnn", "tgain"],
default="median",
type=str,
)
parser.add_argument(
"--static_feature_selection_model",
choices=["greedy-addition", "greedy-deletion", "recursive-addition", "recursive-deletion", None],
default=None,
type=str,
)
parser.add_argument("--static_feature_selection_number", default=10, type=int)
parser.add_argument(
"--temporal_feature_selection_model",
choices=["greedy-addition", "greedy-deletion", "recursive-addition", "recursive-deletion", None],
default=None,
type=str,
)
parser.add_argument("--temporal_feature_selection_number", default=10, type=int)
parser.add_argument(
"--model_name", choices=["rnn", "gru", "lstm", "attention", "tcn", "transformer"], default="attention", type=str
)
parser.add_argument("--h_dim", default=100, type=int)
parser.add_argument("--n_layer", default=2, type=int)
parser.add_argument("--n_head", default=2, type=int)
parser.add_argument("--batch_size", default=400, type=int)
parser.add_argument("--epochs", default=20, type=int)
parser.add_argument("--learning_rate", default=0.001, type=float)
parser.add_argument("--static_mode", choices=["concatenate", None], default="concatenate", type=str)
parser.add_argument("--time_mode", choices=["concatenate", None], default="concatenate", type=str)
parser.add_argument("--task", choices=["classification", "regression"], default="classification", type=str)
parser.add_argument("--uncertainty_model_name", choices=["ensemble"], default="ensemble", type=str)
parser.add_argument("--interpretation_model_name", choices=["tinvase"], default="tinvase", type=str)
parser.add_argument("--metric_name", choices=["auc", "apr", "mse", "mae"], default="auc", type=str)
args = parser.parse_args()
# Call main function
main(args)