forked from vanderschaarlab/clairvoyance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_api_treatment.py
434 lines (356 loc) · 19.7 KB
/
main_api_treatment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
"""Main function for individual treatment effects estimation.
Pipeline
Step 1: Load dataset
- data_name: mimic, ward, cf, mimic_antibiotics
Step 2: Preprocess dataset
(0) NegativeFilter: Replace negative values to NaN
(1) OneHotEncoder: One hot encoding certain features
(2) Normalization (3 options): MinMax, Standard, None
Step 3: Define problem
- problem: online
- label_name: the column name for the label(s)
- max_seq_len: maximum sequence length after padding
- treatment: the column name for treatments
Step 4: Impute dataset
(0) Static imputation (6 options): mean, median, mice, missforest, knn, gain
(1) Temporal imputation (8 options): mean, median, linear, quadratic, cubic, spline, mrnn, tgain
Step 5: Feature selection
- feature selection method (5 options): greedy-addition, greedy-deletion, recursive-addition, recursive-deletion, None
Step 6: Treatment effect model fit and predict
- predictive models (3 options): CRN (Counterfactual Recurrent Network), RMSN (Recurrent Marginal Structural Networks),
GANITE
Step 7: Visualize results
- metric_name (4 options): auc, apr, mse, mae
(1) Visualize the performance on estimating factual outcomes
(2) Visualize the counterfactual trajectories
"""
# Necessary packages
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import warnings
warnings.filterwarnings("ignore")
import sys
sys.path.append("../")
from datasets import CSVLoader
from preprocessing import FilterNegative, OneHotEncoder, Normalizer, ProblemMaker
from imputation import Imputation
from feature_selection import FeatureSelection
from treatments import treatment_effects_model
from evaluation import Metrics
from evaluation import print_performance, print_counterfactual_predictions
from utils import PipelineComposer
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
def main(args):
"""Main function for individual treatment effect estimation.
Args:
- data loading parameters:
- data_names: mimic, ward, cf, mimic_antibiotics
- preprocess parameters:
- normalization: minmax, standard, None
- one_hot_encoding: input features that need to be one-hot encoded
- problem: 'online'
- 'online': prediction at every time stamps of the time-series
- max_seq_len: maximum sequence length after padding
- label_name: the column name for the label(s)
- treatment: the column name for treatments
- imputation parameters:
- static_imputation_model: mean, median, mice, missforest, knn, gain
- temporal_imputation_model: mean, median, linear, quadratic, cubic, spline, mrnn, tgain
- feature selection parameters:
- feature_selection_model: greedy-addition, greedy-deletion, recursive-addition, recursive-deletion, None
- feature_number: selected feature number
- treatment effects model parameters:
- model_name: CRN, RMSN, GANITE
Each model has different types of hyperparameters that need to be set.
- Parameters needed for the Counterfactual Recurrent Network (CRN):
- hyperparameters for encoder:
- rnn_hidden_units: hidden dimensions in the LSTM unit
- rnn_keep_prob: keep probability used for variational dropout in the LSTM unit
- br_size: size of the balancing representation
- fc_hidden_units: hidden dimensions of the fully connected layers used for treatment classifier and predictor
- batch_size: number of samples in mini-batch
- num_epochs: number of epochs
- learning_rate: learning rate
- max_alpha: alpha controls the trade-off between building treatment invariant representations (domain
discrimination) and being able to predict outcomes (outcome prediction); during training, CRN uses an
exponentially increasing schedule for alpha from 0 to max_alpha.
- hyperparameters for decoder:
- the decoder requires the same hyperparameters as the encoder with the exception of the rnn_hidden_units
which is set to be equal to the br_size of the encoder
- Parameters for Recurrent Marginal Structural Networks (RMSN):
- hyperparameters for encoder:
- dropout_rate: dropout probability used for variational
- rnn_hidden_units: hidden dimensions in the LSTM unit
- batch_size: number of samples in mini-batch
- num_epochs: number of epochs
- learning_rate: learning rate
- max_norm: max gradient norm used for gradient clipping during training
- hyperparameters for decoder:
- the decoder requires the same hyperparameters as the encoder.
- model_dir: directory where the model is saved
- model_name: name of the saved model
- Parameters for GANITE:
- batch size: number of samples in mini-batch
- alpha: parameter trading off between discriminator loss and supervised loss for the generator training
- learning_rate: learning rate
- hidden_units: hidden dimensions of the fully connected layers used in the networks
- stack_dim: number of timesteps to stack
All models have the following common parameters:
- static_mode: how to utilize static features (concatenate or None)
- time_mode: how to utilize time information (concatenate or None)
- task: 'classification' or 'regression'
- metric_name: auc, apr, mae, mse (used for factual prediction)
- patient id: patient for which counterfactual trajectories are computed
- timestep: timestep in patient trajectory for estimating counterfactuals
"""
# %% Step 0: Set basic parameters
metric_sets = [args.metric_name]
metric_parameters = {"problem": args.problem, "label_name": [args.label_name]}
# %% Step 1: Upload Dataset
# File names
data_directory = "../datasets/data/" + args.data_name + "/" + args.data_name + "_"
data_loader_training = CSVLoader(
static_file=data_directory + "static_train_data.csv.gz",
temporal_file=data_directory + "temporal_train_data_eav.csv.gz",
)
data_loader_testing = CSVLoader(
static_file=data_directory + "static_test_data.csv.gz",
temporal_file=data_directory + "temporal_test_data_eav.csv.gz",
)
dataset_training = data_loader_training.load()
dataset_testing = data_loader_testing.load()
print("Finish data loading.")
# %% Step 2: Preprocess Dataset
# (0) filter out negative values (Automatically)
negative_filter = FilterNegative()
# (1) one-hot encode categorical features
onehot_encoder = OneHotEncoder(one_hot_encoding_features=[args.one_hot_encoding])
# (2) Normalize features: 3 options (minmax, standard, none)
normalizer = Normalizer(args.normalization)
filter_pipeline = PipelineComposer(negative_filter, onehot_encoder, normalizer)
dataset_training = filter_pipeline.fit_transform(dataset_training)
dataset_testing = filter_pipeline.transform(dataset_testing)
print("Finish preprocessing.")
# %% Step 3: Define Problem
problem_maker = ProblemMaker(
problem=args.problem, label=[args.label_name], max_seq_len=args.max_seq_len, treatment=[args.treatment]
)
dataset_training = problem_maker.fit_transform(dataset_training)
dataset_testing = problem_maker.fit_transform(dataset_testing)
print("Finish defining problem.")
# %% Step 4: Impute Dataset
static_imputation = Imputation(imputation_model_name=args.static_imputation_model, data_type="static")
temporal_imputation = Imputation(imputation_model_name=args.temporal_imputation_model, data_type="temporal")
imputation_pipeline = PipelineComposer(static_imputation, temporal_imputation)
dataset_training = imputation_pipeline.fit_transform(dataset_training)
dataset_testing = imputation_pipeline.transform(dataset_testing)
print("Finish imputation.")
# %% Step 5: Feature selection (4 options)
static_feature_selection = FeatureSelection(
feature_selection_model_name=args.static_feature_selection_model,
feature_type="static",
feature_number=args.static_feature_selection_number,
task=args.task,
metric_name=args.metric_name,
metric_parameters=metric_parameters,
)
temporal_feature_selection = FeatureSelection(
feature_selection_model_name=args.temporal_feature_selection_model,
feature_type="temporal",
feature_number=args.temporal_feature_selection_number,
task=args.task,
metric_name=args.metric_name,
metric_parameters=metric_parameters,
)
feature_selection_pipeline = PipelineComposer(static_feature_selection, temporal_feature_selection)
dataset_training = feature_selection_pipeline.fit_transform(dataset_training)
dataset_testing = feature_selection_pipeline.transform(dataset_testing)
print("Finish feature selection.")
# %% Step 6: Fit treatment effects (3 options)
# Set the validation data for best model saving
dataset_training.train_val_test_split(prob_val=0.2, prob_test=0.0)
# Set the treatment effects model
model_name = args.model_name
# Set treatment effects model parameters
if model_name == "CRN":
model_parameters = {
"encoder_rnn_hidden_units": args.crn_encoder_rnn_hidden_units,
"encoder_br_size": args.crn_encoder_br_size,
"encoder_fc_hidden_units": args.crn_encoder_fc_hidden_units,
"encoder_learning_rate": args.crn_encoder_learning_rate,
"encoder_batch_size": args.crn_encoder_batch_size,
"encoder_keep_prob": args.crn_encoder_keep_prob,
"encoder_num_epochs": args.crn_encoder_num_epochs,
"encoder_max_alpha": args.crn_encoder_max_alpha,
"decoder_br_size": args.crn_decoder_br_size,
"decoder_fc_hidden_units": args.crn_decoder_fc_hidden_units,
"decoder_learning_rate": args.crn_decoder_learning_rate,
"decoder_batch_size": args.crn_decoder_batch_size,
"decoder_keep_prob": args.crn_decoder_keep_prob,
"decoder_num_epochs": args.crn_decoder_num_epochs,
"decoder_max_alpha": args.crn_decoder_max_alpha,
"projection_horizon": args.projection_horizon,
"static_mode": args.static_mode,
"time_mode": args.time_mode,
}
treatment_model = treatment_effects_model(model_name, model_parameters, task="classification")
treatment_model.fit(dataset_training)
elif model_name == "RMSN":
hyperparams_encoder_iptw = {
"dropout_rate": args.rmsn_encoder_dropout_rate,
"memory_multiplier": args.rmsn_encoder_memory_multiplier,
"num_epochs": args.rmsn_encoder_num_epochs,
"batch_size": args.rmsn_encoder_batch_size,
"learning_rate": args.rmsn_encoder_learning_rate,
"max_norm": args.rmsn_encoder_max_norm,
}
hyperparams_decoder_iptw = {
"dropout_rate": args.rmsn_decoder_dropout_rate,
"memory_multiplier": args.rmsn_decoder_memory_multiplier,
"num_epochs": args.rmsn_decoder_num_epochs,
"batch_size": args.rmsn_decoder_batch_size,
"learning_rate": args.rmsn_decoder_learning_rate,
"max_norm": args.rmsn_decoder_max_norm,
}
model_parameters = {
"hyperparams_encoder_iptw": hyperparams_encoder_iptw,
"hyperparams_decoder_iptw": hyperparams_decoder_iptw,
"model_dir": args.rmsn_model_dir,
"model_name": args.rmsn_model_name,
"static_mode": args.static_mode,
"time_mode": args.time_mode,
}
treatment_model = treatment_effects_model(model_name, model_parameters, task="classification")
treatment_model.fit(dataset_training, projection_horizon=args.projection_horizon)
elif model_name == "GANITE":
hyperparams = {
"batch_size": args.ganite_batch_size,
"alpha": args.ganite_alpha,
"hidden_dims": args.ganite_hidden_dims,
"learning_rate": args.ganite_learning_rate,
}
model_parameters = {
"hyperparams": hyperparams,
"stack_dim": args.ganite_stack_dim,
"static_mode": args.static_mode,
"time_mode": args.time_mode,
}
treatment_model = treatment_effects_model(model_name, model_parameters, task="classification")
treatment_model.fit(dataset_training)
test_y_hat = treatment_model.predict(dataset_testing)
print("Finish treatment effects model training and testing.")
# %% Step 9: Visualize Results
# Evaluate predictor model
result = Metrics(metric_sets, metric_parameters).evaluate(dataset_testing.label, test_y_hat)
print("Finish predictor model evaluation.")
# Visualize the output
# (1) Performance on estimating factual outcomes
print("Overall performance on estimating factual outcomes")
print_performance(result, metric_sets, metric_parameters)
# (2) Counterfactual trajectories
print("Counterfactual trajectories")
if model_name in ["CRN", "RMSN"]:
# Predict and visualize counterfactuals for the sequence of treatments indicated by the user
# through the treatment_options. The lengths of each sequence of treatments needs to be projection_horizon + 1.
treatment_options = np.array([[[1], [1], [1], [1], [1], [0]], [[0], [0], [0], [0], [1], [1]]])
history, counterfactual_traj = treatment_model.predict_counterfactual_trajectories(
dataset=dataset_testing,
patient_id=args.patient_id,
timestep=args.timestep,
treatment_options=treatment_options,
)
print_counterfactual_predictions(
patient_history=history, treatment_options=treatment_options, counterfactual_predictions=counterfactual_traj
)
return
# %%
if __name__ == "__main__":
# Inputs for the main function
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_name", choices=["mimic", "ward", "cf", "mimic_antibiotics"], default="mimic_antibiotics", type=str
)
parser.add_argument("--normalization", choices=["minmax", "standard", None], default="minmax", type=str)
parser.add_argument("--one_hot_encoding", default="admission_type", type=str)
parser.add_argument("--problem", choices=["online", "one-shot"], default="online", type=str)
parser.add_argument("--max_seq_len", help="maximum sequence length", default=20, type=int)
parser.add_argument("--label_name", default="ventilator", type=str)
parser.add_argument("--treatment", default="antibiotics", type=str)
parser.add_argument(
"--static_imputation_model",
choices=["mean", "median", "mice", "missforest", "knn", "gain"],
default="median",
type=str,
)
parser.add_argument(
"--temporal_imputation_model",
choices=["mean", "median", "linear", "quadratic", "cubic", "spline", "mrnn", "tgain"],
default="median",
type=str,
)
parser.add_argument(
"--static_feature_selection_model",
choices=["greedy-addition", "greedy-deletion", "recursive-addition", "recursive-deletion", None],
default=None,
type=str,
)
parser.add_argument("--static_feature_selection_number", default=10, type=int)
parser.add_argument(
"--temporal_feature_selection_model",
choices=["greedy-addition", "greedy-deletion", "recursive-addition", "recursive-deletion", None],
default=None,
type=str,
)
parser.add_argument("--temporal_feature_selection_number", default=10, type=int)
parser.add_argument("--model_name", choices=["CRN", "RMSN", "GANITE"], default="CRN", type=str)
parser.add_argument("--projection_horizon", default=5, type=int)
# Hyperparams for CRN
parser.add_argument("--crn_encoder_rnn_hidden_units", default=128, type=int)
parser.add_argument("--crn_encoder_br_size", default=64, type=int)
parser.add_argument("--crn_encoder_fc_hidden_units", default=128, type=int)
parser.add_argument("--crn_encoder_learning_rate", default=0.001, type=int)
parser.add_argument("--crn_encoder_batch_size", default=256, type=int)
parser.add_argument("--crn_encoder_keep_prob", default=0.9, type=int)
parser.add_argument("--crn_encoder_num_epochs", default=100, type=float)
parser.add_argument("--crn_encoder_max_alpha", default=1.0, type=float)
parser.add_argument("--crn_decoder_br_size", default=64, type=int)
parser.add_argument("--crn_decoder_fc_hidden_units", default=128, type=int)
parser.add_argument("--crn_decoder_learning_rate", default=0.001, type=int)
parser.add_argument("--crn_decoder_batch_size", default=512, type=int)
parser.add_argument("--crn_decoder_keep_prob", default=0.9, type=int)
parser.add_argument("--crn_decoder_num_epochs", default=100, type=float)
parser.add_argument("--crn_decoder_max_alpha", default=1.0, type=float)
# Hyperparams for RMSN
parser.add_argument("--rmsn_encoder_dropout_rate", default=0.1, type=int)
parser.add_argument("--rmsn_encoder_memory_multiplier", default=4.0, type=int)
parser.add_argument("--rmsn_encoder_num_epochs", default=100, type=int)
parser.add_argument("--rmsn_encoder_batch_size", default=64, type=int)
parser.add_argument("--rmsn_encoder_learning_rate", default=0.01, type=int)
parser.add_argument("--rmsn_encoder_max_norm", default=0.5, type=int)
parser.add_argument("--rmsn_decoder_dropout_rate", default=0.1, type=float)
parser.add_argument("--rmsn_decoder_memory_multiplier", default=2.0, type=float)
parser.add_argument("--rmsn_decoder_num_epochs", default=100, type=int)
parser.add_argument("--rmsn_decoder_batch_size", default=512, type=int)
parser.add_argument("--rmsn_decoder_learning_rate", default=0.001, type=int)
parser.add_argument("--rmsn_decoder_max_norm", default=4.0, type=int)
parser.add_argument("--rmsn_model_dir", default="tmp/", type=str)
parser.add_argument("--rmsn_model_name", default="rmsn", type=str)
# Hyperparams for GANITE
parser.add_argument("--ganite_batch_size", default=128, type=float)
parser.add_argument("--ganite_alpha", default=1.0, type=int)
parser.add_argument("--ganite_hidden_dims", default=128, type=int)
parser.add_argument("--ganite_learning_rate", default=0.001, type=int)
parser.add_argument("--ganite_stack_dim", default=4, type=int)
parser.add_argument("--patient_id", default=2, type=int)
parser.add_argument("--timestep", default=5, type=int)
parser.add_argument("--static_mode", choices=["concatenate", None], default="concatenate", type=str)
parser.add_argument("--time_mode", choices=["concatenate", None], default="concatenate", type=str)
parser.add_argument("--task", choices=["classification", "regression"], default="classification", type=str)
parser.add_argument("--metric_name", choices=["auc", "apr", "mse", "mae"], default="auc", type=str)
args = parser.parse_args()
# Call main function
main(args)