-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_draw.py
214 lines (188 loc) · 7.23 KB
/
demo_draw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import vnpy_evo.trader.database as db
import vnpy_evo.trader.setting as setting
from vnpy_evo.trader.constant import Exchange, Interval, Direction
from vnpy_evo.trader.object import TickData, BarData
from vnpy_evo.trader.engine import MainEngine
from vnpy_sqlite_hft import TradeData
import plotly.graph_objects as go
import datetime
setting.SETTINGS["database.name"] = "sqlite_hft"
setting.SETTINGS["database.database"] = "database.db"
# x and y given as array_like objects
import plotly.express as px
import pandas as pd
def draw_trade_scatter(trades: list[TradeData]):
print("trade list size",len(trades))
x = []
y = []
side_list = [] # 用于存储每个交易的side属性
for trade in trades:
x.append(trade.datetime)
y.append(trade.price)
if trade.side == 0:
side_list.append('buy')
# side_list.append(trade.side)
else:
side_list.append('sell')
# 根据side属性设置不同颜色,这里简单示例,假设side取值为 'buy' 和 'sell',你可按需调整
color_discrete_map = {
"buy": 'green',
"sell": 'blue'
}
fig = px.scatter(x=x, y=y, color=side_list, color_discrete_map=color_discrete_map)
fig.show()
def draw_trade_scatter_v2(trades: list[TradeData]):
# 提取交易数据中的关键信息到DataFrame,方便后续处理
trade_data = []
for trade in trades:
trade_data.append({
'datetime': trade.datetime,
'price': trade.price,
'side': "buy" if trade.side == 0 else "sell",
'volume': trade.volume
})
df = pd.DataFrame(trade_data)
# 根据size进行分组,并统计每组的数量
# size_counts = df['size'].value_counts().reset_index()
# size_counts.columns = ['size', 'count']
# 创建散点图,颜色按side区分,点的大小按size的数量映射(可根据实际调整大小比例等参数)
fig = px.scatter(df, x='datetime', y='price', color='side',
size='volume', size_max=60, # 可调整size_max控制最大点的大小
color_discrete_map={
'buy': 'green',
'sell': 'red'
},
hover_name='volume') # 鼠标悬停显示size信息
fig.show()
def draw_ticker_scatter(
tickers: list[TickData],
):
ticker_data = []
for ticker in tickers:
ticker_data.append({
'datetime': ticker.datetime,
'price': ticker.last_price,
'volume': ticker.last_volume
})
df = pd.DataFrame(ticker_data)
# 根据size进行分组,并统计每组的数量
# size_counts = df['size'].value_counts().reset_index()
# size_counts.columns = ['size', 'count']
print(df)
# 创建散点图,颜色按side区分,点的大小按size的数量映射(可根据实际调整大小比例等参数)
fig = px.scatter(df, x='datetime', y='price',
size='volume', size_max=60, # 可调整size_max控制最大点的大小
hover_name='volume') # 鼠标悬停显示size信息
fig.show()
def draw_trade_and_bar_scatter(
bars: list[BarData],
trades: list[TradeData]
):
# 处理BarData,转换为适合绘图的数据格式
trade_min_time = min([trade.datetime for trade in trades])
trade_max_time = max([trade.datetime for trade in trades])
print(f"TradeData 最早时间: {trade_min_time}, 最晚时间: {trade_max_time}")
# 处理BarData,过滤出时间在 TradeData 范围内的Bar
bar_data = []
for bar in bars:
if trade_min_time <= bar.datetime <= trade_max_time:
bar_data.append({
'datetime': bar.datetime,
'open': bar.open_price,
'high': bar.high_price,
'low': bar.low_price,
'close': bar.close_price, # 使用 'close' 作为价格
'volume': bar.volume
})
df_bars = pd.DataFrame(bar_data)
# 找到最早和最晚的时间
bar_min_time = df_bars['datetime'].min()
bar_max_time = df_bars['datetime'].max()
print(f"BarData 最早时间: {bar_min_time}, 最晚时间: {bar_max_time}")
# 处理TradeData,过滤出时间在 BarData 范围内的交易
trade_data_long = [] # 存储 Long 交易
trade_data_short = [] # 存储 Short 交易
for trade in trades:
if bar_min_time <= trade.datetime <= bar_max_time:
trade_info = {
'datetime': trade.datetime,
'price': trade.price,
'volume': trade.volume
}
if trade.direction == Direction.LONG:
trade_data_long.append(trade_info)
elif trade.direction == Direction.SHORT:
trade_data_short.append(trade_info)
print(f"trade 交易时间:long({len(trade_data_long)}) short({len(trade_data_short)}) ")
df_trades_long = pd.DataFrame(trade_data_long)
df_trades_short = pd.DataFrame(trade_data_short)
# 创建价格的折线图
price_trace = go.Scatter(
x=df_bars['datetime'],
y=df_bars['close'],
mode='lines',
name='Price',
line=dict(color='royalblue')
)
# 创建交易量的条形图
volume_trace = go.Bar(
x=df_bars['datetime'],
y=df_bars['volume'],
name='Volume',
marker=dict(color='orange'),
yaxis='y2' # 绑定到第二个 y 轴
)
# 创建 Long 交易数据的散点图
trade_trace_long = go.Scatter(
x=df_trades_long['datetime'],
y=df_trades_long['price'],
mode='markers',
name='Long Trade',
marker=dict(color='green', size=10, symbol='triangle-up')
)
# 创建 Short 交易数据的散点图
trade_trace_short = go.Scatter(
x=df_trades_short['datetime'],
y=df_trades_short['price'],
mode='markers',
name='Short Trade',
marker=dict(color='red', size=10, symbol='triangle-down')
)
# 创建布局,设置双Y轴
layout = go.Layout(
title='Price, Volume and Trades Over Time',
xaxis=dict(title='Datetime'),
yaxis=dict(
title='Price',
side='left',
showgrid=False
),
yaxis2=dict(
title='Volume',
side='right',
overlaying='y', # 与左边的y轴重叠
showgrid=False
),
barmode='stack', # 条形图的叠加方式
hovermode='x unified' # 鼠标悬停时显示统一信息
)
# 创建图形并显示
fig = go.Figure(data=[price_trace, trade_trace_long, trade_trace_short], layout=layout)
fig.show()
def main():
sqlite_db = db.get_database()
# trades = sqlite_db.load_trade_data(
# symbol="DOEG-USDT",
# exchange=Exchange.OKX,
# start=datetime.datetime(2024, 12, 8, 2, 18) ,
# end=datetime.datetime(2024, 12, 8, 2, 25) )
# draw_trade_scatter_v2(trades)
tickers = sqlite_db.load_tick_data(
"DOGE/USDT",
Exchange.OKX,
start=datetime.datetime(2024, 12, 8, 2, 18) ,
end=datetime.datetime(2024, 12, 17, 2, 25)
)
draw_ticker_scatter(tickers)
if __name__ == '__main__':
main()