-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_bert.py
225 lines (181 loc) · 7.44 KB
/
train_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import sys
import numpy as np
import argparse
from utils import build_dataset, build_iterator, get_time_dif
import horovod.torch as hvd
import torch.nn as nn
import torch.nn.functional as F
from sklearn import metrics
from pytorch_pretrained.optimization import BertAdam
import models.bert_one as x
import os
from torch.utils.tensorboard import SummaryWriter
import time
import kubeai.elastic as kubeai
parser = argparse.ArgumentParser(description='Bert Chinese Text Classification')
parser.add_argument('--model', type=str, default="bert")
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--learning-rate', type=float, default=5e-5)
parser.add_argument('--log-dir', default='./logs')
parser.add_argument('--batches-per-commit', type=int, default=100)
parser.add_argument('--batches-per-host-check', type=int, default=10)
parser.add_argument('--checkpoint-format', default='./checkpoint-{epoch}.pth.tar')
args = parser.parse_args()
def init_network(model, method='xavier', exclude='embedding', seed=123):
for name, w in model.named_parameters():
if exclude not in name:
if len(w.size()) < 2:
continue
if 'weight' in name:
if method == 'xavier':
nn.init.xavier_normal_(w)
elif method == 'kaiming':
nn.init.kaiming_normal_(w)
else:
nn.init.normal_(w)
elif 'bias' in name:
nn.init.constant_(w, 0)
else:
pass
def train(state, train_iter, test_iter):
model = state.model
model.train()
epoch = state.epoch
train_acc = Metric('train_accuracy')
train_loss = Metric('train_loss')
for idx, (trains, labels) in enumerate(train_iter):
optimizer.zero_grad()
data_batch = trains
labels_batch = labels
outputs = model(data_batch)
model.zero_grad()
loss = F.cross_entropy(outputs, labels_batch)
loss.backward()
optimizer.step()
true = labels_batch.data.cpu()
predict = torch.max(outputs.data, 1)[1].cpu()
train_acc.update(torch.Tensor([np.float32(metrics.accuracy_score(true, predict))])[0])
train_loss.update(loss)
if kubeai.check_alive() == False:
save_checkpoint(state.epoch)
sys.exit(-1)
msg = 'Epoch: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}'
if hvd.rank() == 0:
print(msg.format(epoch, train_loss.avg.item(), train_acc.avg.item()))
if log_writer:
log_writer.add_scalar('train/loss', train_loss.avg)
log_writer.add_scalar('train/accuracy', train_acc.avg)
state.commit()
evaluate(model, test_iter, state.epoch)
model.train()
def evaluate(model, data_iter, epoch):
model.eval()
loss_total = 0
val_loss = Metric('val_loss')
val_accuracy = Metric('val_accuracy')
with torch.no_grad():
for texts, labels in data_iter:
outputs = model(texts)
loss = F.cross_entropy(outputs, labels)
loss_total += loss
labels = labels.data.cpu().numpy()
predic = torch.max(outputs.data, 1)[1].cpu().numpy()
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
labels_all = np.append(labels_all, labels)
predict_all = np.append(predict_all, predic)
val_loss.update(loss)
val_accuracy.update(torch.Tensor([np.float32(metrics.accuracy_score(labels_all, predict_all))])[0])
if kubeai.check_alive() == False:
save_checkpoint(state.epoch)
sys.exit(-1)
msg = 'Epoch: {0:>6}, Val Loss: {1:>5.2}, Val Acc: {2:>6.2%}'
if hvd.rank() == 0:
print(msg.format(epoch, val_loss.avg.item(), val_accuracy.avg.item()))
if log_writer:
log_writer.add_scalar('val/loss', val_loss.avg)
log_writer.add_scalar('val/accuracy', val_accuracy.avg)
class Metric(object):
def __init__(self, name):
self.name = name
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)
def update(self, val):
self.sum += hvd.allreduce(val.detach().cpu(), name=self.name)
self.n += 1
@property
def avg(self):
return self.sum / self.n
@hvd.elastic.run
def full_train(state):
while state.epoch < args.epochs:
train(state, train_iter, test_iter)
save_checkpoint(state.epoch)
end_epoch(state)
def end_epoch(state):
state.epoch += 1
state.commit()
def save_checkpoint(epoch):
if hvd.rank() == 0:
filepath = args.checkpoint_format.format(epoch=epoch + 1)
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(state, filepath)
if __name__ == '__main__':
hvd.init()
kubeai.init()
dataset = '/examples/elastic/pytorch/THUCNews'
model_name = args.model
config = x.Config(dataset, args.batch_size, args.learning_rate)
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True
log_writer = SummaryWriter(args.log_dir) if hvd.rank() == 0 else None
start_time = time.time()
print("Loading data...")
train_data, dev_data, test_data = build_dataset(config)
train_dataset_size = int(len(train_data) / hvd.size())
test_dataset_size = int(len(test_data) / hvd.size())
train_iter = build_iterator(train_data[hvd.rank() * train_dataset_size:(hvd.rank() + 1) * train_dataset_size],
config)
test_iter = build_iterator(test_data[hvd.rank() * test_dataset_size:(hvd.rank() + 1) * test_dataset_size], config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
model = x.Model(config).cuda()
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
param_optimizer = list(model.named_parameters())
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=config.learning_rate,
warmup=0.05,
t_total=len(train_iter) * config.num_epochs)
compression = hvd.Compression.fp16
optimizer = hvd.DistributedOptimizer(
optimizer, named_parameters=model.named_parameters(),
compression=compression,
backward_passes_per_step=1,
op=hvd.Average,
gradient_predivide_factor=1.0)
resume_from_epoch = 0
if hvd.rank() == 0:
for try_epoch in range(args.epochs, 0, -1):
if os.path.exists(args.checkpoint_format.format(epoch=try_epoch)):
resume_from_epoch = try_epoch
break
if resume_from_epoch > 0:
filepath = args.checkpoint_format.format(epoch=resume_from_epoch)
checkpoint = torch.load(filepath)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
state = hvd.elastic.TorchState(model=model,
optimizer=optimizer,
batch=0,
epoch=0)
full_train(state)