-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv2d.py
318 lines (280 loc) · 15 KB
/
conv2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
################################################################################
#
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
import pycutlass
from pycutlass import *
from pycutlass.conv2d_operation import *
from pycutlass.utils import reference_model
import torch.nn.functional as F
import argparse
# parse the arguments
parser = argparse.ArgumentParser(description="Launch CUTLASS convolution 2d kernels from python")
# Operation description
# math instruction description
parser.add_argument("-i", "--instruction_shape",
default=[1, 1, 1], nargs=3, type=int,
help="This option describes the size of MMA op")
parser.add_argument("-ta", "--element_a", default="float32", type=str,
choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'],
help='Data type of elements in input tensor A')
parser.add_argument("-tb", "--element_b", default="float32", type=str,
choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'],
help='Data type of elements in input tensor B')
parser.add_argument("-tc", "--element_c", default="float32", type=str,
choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'],
help='Data type of elements in input tensor C and output tensor D')
parser.add_argument("-tacc", "--element_acc", default="float32", type=str,
choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'],
help='Data type of accumulator')
parser.add_argument('-m', "--math", default="multiply_add",
type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction")
parser.add_argument('-op', "--opcode", default="simt", type=str,
choices=["Simt", 'TensorOp'],
help='This option describes whether you want to use tensor \
cores (TensorOp) or regular SIMT cores (Simt) on GPU SM')
# tile description
parser.add_argument("-b", "--threadblock_shape",
default=[128, 128, 8], nargs=3, type=int,
help="This option describes the tile size a thread block with compute")
parser.add_argument("-s", "--stages", default=4,
type=int, help="Number of pipelines you want to use")
parser.add_argument("-w", "--warp_count", default=[
4, 2, 1], nargs=3, type=int,
help="This option describes the number of warps along M, N, and K of the threadblock")
parser.add_argument("-cc", "--compute_capability", default=80,
type=int, help="This option describes CUDA SM architecture number")
# A
parser.add_argument('-la', "--layout_a", default="TensorNHWC", type=str, choices=[
"TensorNHWC", "TensorNC32HW32"],
help="Memory layout of input tensor A")
parser.add_argument('-aa', '--alignment_a', default=1,
type=int, help="Memory alignement of input tensor A")
# B
parser.add_argument('-lb', "--layout_b", default="TensorNHWC", type=str, choices=[
"TensorNHWC", "TensorC32RSK32"],
help="Memory layout of input tensor B")
parser.add_argument('-ab', '--alignment_b', default=1,
type=int, help="Memory alignment of input tensor B")
# C
parser.add_argument('-lc', "--layout_c", default="TensorNHWC", type=str, choices=[
"TensorNHWC", "TensorNC32HW32"],
help="Memory layout of input tensor C and output tensor D")
parser.add_argument('-ac', '--alignment_c', default=1,
type=int, help="Memory alignment of input tensor C and output tensor D")
# epilogue
parser.add_argument("-te", "--element_epilogue", default="float32", type=str,
choices=['float64', 'float32', 'float16', 'bfloat16'],
help='Data type of computation in the epilogue')
parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination",
type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'],
help="This option describes the epilogue part of the kernel")
# swizzling
parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[
"IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8",
"HorizontalSwizzle", "StridedDgradIdentitySwizzle1", "StridedDgradIdentitySwizzle4",
"StridedDgradHorizontalSwizzle"],
help="This option describes how thread blocks are scheduled on GPU")
# conv related
parser.add_argument("-co", "--conv_kind", default="fprop", type=str, choices=['fprop', 'dgrad', 'wgrad'],
help="The type of convolution: forward propagation (fprop), \
gradient of activation (dgrad), gradient of weight (wgrad)")
parser.add_argument("-st", "--stride_support", default="Strided", type=str, choices=["Strided", "Unity"],
)
parser.add_argument("-ia", "--iterator_algorithm", default="analytic", type=str,
choices=["analytic", "optimized", "fixed_channels", "few_channels"],
help="This option describes iterator algorithm")
# arguments
parser.add_argument("-sm", "--split_k_mode", default="Serial", type=str, choices=["Serial", "Parallel"],
help="Split K Mode. Serial is used for non-splitK or serial-splitK.\
Parallel is used for parallel splitK.")
parser.add_argument('-k', '--split_k_slices', default=1,
type=int, help="Number of split-k partitions. (default 1)")
parser.add_argument("-nhwc", "--nhwc", nargs=4, type=int, help="input size (NHWC)")
parser.add_argument("-krsc", "--krsc", nargs=4, type=int, help="filter size (KRSC)")
parser.add_argument("-pad", "--pad", nargs=4, type=int, help="padding (pad_h, _, pad_w, _)")
parser.add_argument("-stride", "--stride", nargs=2, type=int, help="stride (stride_h, stride_w)")
parser.add_argument("-dilation", "--dilation", nargs=2, type=int, help="dilation (dilation_h, dilation_w)")
parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha")
parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta")
parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector")
# Activation function
parser.add_argument("-activ", "--activation_function", default="identity",
choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function")
parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float,
help="addition arguments for activation")
parser.add_argument('--print_cuda', action="store_true",
help="print the underlying CUDA kernel")
try:
args = parser.parse_args()
except:
sys.exit(0)
pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32)
np.random.seed(0)
element_a = getattr(cutlass, args.element_a)
element_b = getattr(cutlass, args.element_b)
element_c = getattr(cutlass, args.element_c)
element_acc = getattr(cutlass, args.element_acc)
math_operation = getattr(MathOperation, args.math)
opclass = getattr(cutlass.OpClass, args.opcode)
math_inst = MathInstruction(
args.instruction_shape, element_a, element_b,
element_acc, opclass, math_operation
)
tile_description = TileDescription(
args.threadblock_shape, args.stages, args.warp_count,
math_inst
)
layout_a = getattr(cutlass, args.layout_a)
layout_b = getattr(cutlass, args.layout_b)
layout_c = getattr(cutlass, args.layout_c)
A = TensorDescription(
element_a, layout_a, args.alignment_a
)
B = TensorDescription(
element_b, layout_b, args.alignment_b
)
C = TensorDescription(
element_c, layout_c, args.alignment_c
)
element_epilogue = getattr(cutlass, args.element_epilogue)
if (args.activation_function == "identity"
or (args.split_k_mode == "Parallel" and args.split_k_slices > 1)):
#
epilogue_functor = getattr(pycutlass, args.epilogue_functor)(
C.element, C.alignment, math_inst.element_accumulator, element_epilogue)
else:
epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")(
getattr(pycutlass, args.activation_function)(element_epilogue),
C.element, C.alignment, math_inst.element_accumulator, element_epilogue)
iterator_algorithm = getattr(cutlass.conv.IteratorAlgorithm, args.iterator_algorithm)
swizzling_functor = getattr(cutlass, args.swizzling_functor)
stride_support = getattr(StrideSupport, args.stride_support)
conv_kind = getattr(cutlass.conv.Operator, args.conv_kind)
operation = Conv2dOperation(
conv_kind=conv_kind, iterator_algorithm=iterator_algorithm,
arch=args.compute_capability, tile_description=tile_description,
A=A, B=B, C=C, stride_support=stride_support,
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor
)
if args.print_cuda:
print(operation.rt_module.emit())
operations = [operation,]
if args.split_k_mode == "Parallel" and args.split_k_slices > 1:
if (args.activation_function == "identity"):
epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)(
C.element, C.alignment, math_inst.element_accumulator, element_epilogue)
else:
epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")(
getattr(pycutlass, args.activation_function)(element_epilogue),
C.element, C.alignment, math_inst.element_accumulator, element_epilogue)
reduction_operation = ReductionOperation(
shape=cutlass.MatrixCoord(4, 32 * C.alignment),
C=C, element_accumulator=element_acc,
element_compute=element_epilogue,
epilogue_functor=epilogue_functor_reduction,
count=C.alignment
)
operations.append(reduction_operation)
pycutlass.compiler.add_module(operations)
problem_size = cutlass.conv.Conv2dProblemSize(
cutlass.Tensor4DCoord(args.nhwc[0], args.nhwc[1], args.nhwc[2], args.nhwc[3]),
cutlass.Tensor4DCoord(args.krsc[0], args.krsc[1], args.krsc[2], args.krsc[3]),
cutlass.Tensor4DCoord(args.pad[0], args.pad[1], args.pad[2], args.pad[3]),
cutlass.MatrixCoord(args.stride[0], args.stride[1]),
cutlass.MatrixCoord(args.dilation[0], args.dilation[1]),
cutlass.conv.Mode.cross_correlation,
args.split_k_slices, 1
)
# User-provide inputs
tensor_A_size = cutlass.conv.implicit_gemm_tensor_a_size(
conv_kind, problem_size
)
tensor_B_size = cutlass.conv.implicit_gemm_tensor_b_size(
conv_kind, problem_size
)
if args.bias:
tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_extent(
conv_kind, problem_size
).at(3)
else:
tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_size(
conv_kind, problem_size
)
tensor_D_size = cutlass.conv.implicit_gemm_tensor_c_size(
conv_kind, problem_size
)
if args.element_a != "int8":
tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-8.5, 7.5))
else:
tensor_A = torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-2, 2)
if args.element_b != "int8":
tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-8.5, 7.5))
else:
tensor_B = torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-2, 2)
if args.element_c != "int8":
tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-8.5, 7.5))
else:
tensor_C = torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-2, 2)
tensor_D = torch.ones(size=(tensor_D_size,), dtype=getattr(torch, args.element_c), device="cuda")
arguments = Conv2dArguments(
operation=operation, problem_size=problem_size, A=tensor_A,
B=tensor_B, C=tensor_C, D=tensor_D,
output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)),
split_k_mode=getattr(cutlass.conv.SplitKMode, args.split_k_mode),
split_k_slices=problem_size.split_k_slices
)
if args.split_k_mode == "Parallel" and args.split_k_slices > 1:
implicit_gemm_size = cutlass.conv.implicit_gemm_problem_size(conv_kind, arguments.problem_size)
reduction_arguments = ReductionArguments(
reduction_operation,
problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()],
partitions=problem_size.split_k_slices,
workspace=arguments.ptr_D,
destination=tensor_D,
source=tensor_C,
output_op = reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)),
bias = arguments.bias
)
operation.run(arguments)
if args.split_k_mode == "Parallel" and args.split_k_slices > 1:
reduction_operation.run(reduction_arguments)
reduction_arguments.sync()
else:
arguments.sync()
reference_model = Conv2dReferenceModule(A, B, C, conv_kind)
tensor_D_ref = reference_model.run(tensor_A, tensor_B, tensor_C, arguments.problem_size, args.alpha, args.beta, args.bias)
if (args.activation_function != "identity"):
tensor_D_ref = getattr(F, args.activation_function)(*([tensor_D_ref,] + args.activation_args))
try:
assert torch.equal(tensor_D, tensor_D_ref)
except:
assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2)
print("Passed.")