-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxor.go
171 lines (141 loc) · 3.35 KB
/
xor.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
package main
import (
"fmt"
"math"
"math/rand"
"time"
)
type Xor struct {
or_w1 float64
or_w2 float64
or_bias float64
nand_w1 float64
nand_w2 float64
nand_bias float64
and_w1 float64
and_w2 float64
and_bias float64
}
var train_data_xor = [][3]float64{
{0, 0, 0},
{0, 1, 1},
{1, 0, 1},
{1, 1, 0},
}
func sigmodfx(x float64) float64 {
return float64(1) / (float64(1) + math.Exp(-x))
}
func rand_xor(r *rand.Rand) Xor {
m := Xor{
or_w1: r.Float64(),
or_w2: r.Float64(),
or_bias: r.Float64(),
nand_w1: r.Float64(),
nand_w2: r.Float64(),
nand_bias: r.Float64(),
and_w1: r.Float64(),
and_w2: r.Float64(),
and_bias: r.Float64(),
}
return m
}
func forward(m Xor, x1 float64, x2 float64) float64 {
var x float64 = sigmodfx(m.or_w1*x1 + m.or_w2*x2 + m.or_bias)
var y float64 = sigmodfx(m.nand_w1*x1 + m.nand_w2*x2 + m.nand_bias)
result := sigmodfx(m.and_w1*x + m.and_w2*y + m.and_bias)
return result
}
func xor_cost(m Xor) float64 {
var result float64 = 0
for i := 0; i < len(train_data_xor); i++ {
x1 := train_data_xor[i][0]
x2 := train_data_xor[i][1]
y := forward(m, x1, x2)
diff := y - train_data_xor[i][2]
result += diff * diff
// fmt.Printf("actual: %f, expected: %f\n", y, train_data_xor[i][1])
}
result /= float64(len(train_data_xor))
return result
}
func finite_derative(m Xor, eps float64) Xor {
var dummy Xor
ccc := xor_cost(m)
var saved float64
saved = m.or_w1
m.or_w1 += eps
dummy.or_w1 = (xor_cost(m) - ccc) / eps
m.or_w1 = saved
saved = m.or_w2
m.or_w2 += eps
dummy.or_w1 = (xor_cost(m) - ccc) / eps
m.or_w2 = saved
saved = m.or_bias
m.or_bias += eps
dummy.or_bias = (xor_cost(m) - ccc) / eps
m.or_bias = saved
saved = m.nand_w1
m.nand_w1 += eps
dummy.nand_w1 = (xor_cost(m) - ccc) / eps
m.nand_w1 = saved
saved = m.nand_w2
m.nand_w2 += eps
dummy.nand_w2 = (xor_cost(m) - ccc) / eps
m.nand_w2 = saved
saved = m.nand_bias
m.nand_bias += eps
dummy.nand_bias = (xor_cost(m) - ccc) / eps
m.nand_bias = saved
saved = m.and_w1
m.and_w1 += eps
dummy.and_w1 = (xor_cost(m) - ccc) / eps
m.and_w1 = saved
saved = m.and_w2
m.and_w2 += eps
dummy.and_w2 = (xor_cost(m) - ccc) / eps
m.and_w2 = saved
saved = m.and_bias
m.and_bias += eps
dummy.and_bias = (xor_cost(m) - ccc) / eps
m.and_bias = saved
return dummy
}
func train(m Xor, dummy Xor, rate float64) Xor {
m.or_w1 -= rate * dummy.or_w1
m.or_w2 -= rate * dummy.or_w2
m.or_bias -= rate * dummy.or_bias
m.nand_w1 -= rate * dummy.nand_w1
m.nand_w2 -= rate * dummy.nand_w2
m.nand_bias -= rate * dummy.nand_bias
m.and_w1 -= rate * dummy.and_w1
m.and_w2 -= rate * dummy.and_w2
m.and_bias -= rate * dummy.and_bias
return m
}
func main() {
// (x|y) & ~(x&y)
s1 := rand.NewSource(time.Now().UnixNano())
r := rand.New(s1)
m := rand_xor(r)
rate := 1e-1
eps := 1e-1
// fmt.Println(m)
for i := 0; i < 5000*500; i++ {
dummy := finite_derative(m, eps)
m = train(m, dummy, rate)
}
fmt.Printf("cost = %f\n", xor_cost(m))
fmt.Println(m)
for i := 0; i < 2; i++ {
for j := 0; j < 2; j++ {
fmt.Printf("%d ^ %d => %f\n", i, j, forward(m, float64(i), float64(j)))
}
}
fmt.Println("-------------------------------------------\n")
fmt.Println("or tt:")
for i := 0; i < 2; i++ {
for j := 0; j < 2; j++ {
fmt.Printf("%d | %d => %f\n", i, j, sigmodfx(float64(i)*m.or_w1+float64(j)*m.or_w2+m.or_bias))
}
}
}