-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer.py
25 lines (22 loc) · 1.08 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
from activations import Activation
class Layer:
def __init__(self, incoming,outgoing):
self.incoming=incoming
self.outgoing=outgoing
# Gradients For Weights And Biases
self.gradient=np.array(0*np.random.randn(self.incoming,self.outgoing),dtype=np.float64)
self.gradientBias=np.array([0 for i in range(self.outgoing)],dtype=np.float64)
# Weights And Biases
self.matrixConnection=np.array(0.1*np.random.randn(self.incoming,self.outgoing),dtype=np.float64)
self.bias=np.array(np.random.randn(self.outgoing),dtype=np.float64)
def output(self,input):
# The Output of a Network
for i in range(self.outgoing):
outPutMatrix[i]+=self.bias[i]
outPutMatrix[i]=Activation.sigmoid(outPutMatrix[i])
return outPutMatrix
def clear_Gradient(self):
self.gradient=np.array(0*np.random.randn(self.incoming,self.outgoing),dtype=np.float64)
self.gradientBias=np.array([0 for i in range(self.outgoing)],dtype=np.float64)