-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb.h
146 lines (126 loc) · 3.65 KB
/
b.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# pragma once
#include <math.h>
#include <iostream>
// most of these are self-explanatory
class vec3 {
public:
double dimensions[3];
// User-defined constructor
vec3(){
dimensions[0]=0;
dimensions[1]=0;
dimensions[2]=0;
}
// User parametrized constructor Defined
vec3(double x, double y, double z){
dimensions[0]=x;
dimensions[1]=y;
dimensions[2]=z;
}
// Getter functions
double x() const { return dimensions[0]; }
double y() const { return dimensions[1]; }
double z() const { return dimensions[2]; }
void getData() {
std::cout << dimensions[0] << std::endl;
std::cout << dimensions[1] << std::endl;
std::cout << dimensions[2] << std::endl;
}
double getLength() {
return sqrt(dimensions[0] * dimensions[0] + dimensions[1] * dimensions[1] +
dimensions[2] * dimensions[2]);
}
// this function normailizes a vector between 1-0 in a specific way
void zeroOneNormazilize(){
for( int i =0;i<3;i++){
if(dimensions[i]>1){
dimensions[i]=1;
}
if(dimensions[i]<0){
dimensions[i]=0;
}
}
}
// Setter functions
vec3& operator+=(const vec3 &v) {
dimensions[0] += v.dimensions[0];
dimensions[1] += v.dimensions[1];
dimensions[2] += v.dimensions[2];
return *this;
}
vec3& operator*=(const double t) {
dimensions[0] *= t;
dimensions[1] *= t;
dimensions[2] *= t;
return *this;
}
};
inline vec3 operator+(const vec3 &u, const vec3 &v) {
return vec3(u.dimensions[0] + v.dimensions[0], u.dimensions[1] + v.dimensions[1],
u.dimensions[2] + v.dimensions[2]);
}
inline vec3 operator-(const vec3 &u, const vec3 &v) {
return vec3(u.dimensions[0] - v.dimensions[0], u.dimensions[1] - v.dimensions[1],
u.dimensions[2] - v.dimensions[2]);
}
inline vec3 operator*(const vec3 &u, const vec3 &v) {
return vec3(u.dimensions[0] * v.dimensions[0], u.dimensions[1] * v.dimensions[1],
u.dimensions[2] * v.dimensions[2]);
}
inline vec3 operator*(double t, const vec3 &v) {
return vec3(t * v.dimensions[0], t * v.dimensions[1], t * v.dimensions[2]);
}
inline vec3 operator*(const vec3 &v, double t) {
return t * v;
}
inline double dot(const vec3 &u, const vec3 &v) {
return u.dimensions[0] * v.dimensions[0] + u.dimensions[1] * v.dimensions[1] +
u.dimensions[2] * v.dimensions[2];
}
inline vec3 cross(const vec3 &u, const vec3 &v) {
return vec3(u.dimensions[1] * v.dimensions[2] - u.dimensions[2] * v.dimensions[1],
u.dimensions[2] * v.dimensions[0] - u.dimensions[0] * v.dimensions[2],
u.dimensions[0] * v.dimensions[1] -
u.dimensions[1] * v.dimensions[0]);
}
inline vec3 operator/(vec3 v, double t) {
return (1/t) * v;
}
inline vec3 normalize(vec3 v) {
return v / v.getLength();}
inline vec3 unit_vector(vec3 v) {
return v / v.getLength();
}
class ray {
public:
ray() {}
ray(const vec3& origin, const vec3& direction)
: orig(origin), dir(direction)
{}
void setDirection(vec3 d){dir=d;}
void setOrigin(vec3 o){orig=o;}
vec3 origin() const { return orig; }
vec3 direction() const { return dir; }
vec3 at(double t) const {
return orig + t*dir;
}
public:
vec3 orig;
vec3 dir;
};
struct object{
vec3 pos;
double radius;
vec3 ambinet;
vec3 diffuse;
vec3 specular;
double shiny;
double reflection;
double distance;
} ;
struct light{
vec3 pos;
vec3 ambinet;
vec3 diffuse;
vec3 specular;
} ;