-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathserver.py
283 lines (218 loc) · 12.1 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import socket
import time
import numpy as np
from control_algorithm.adaptive_tau import ControlAlgAdaptiveTauServer
from data_reader.data_reader import get_data
from models.get_model import get_model
from statistic.collect_stat import CollectStatistics
from util.utils import send_msg, recv_msg, get_indices_each_node_case
# Configurations are in a separate config.py file
from config import *
model = get_model(model_name)
if hasattr(model, 'create_graph'):
model.create_graph(learning_rate=step_size)
if time_gen is not None:
use_fixed_averaging_slots = True
else:
use_fixed_averaging_slots = False
if batch_size < total_data: # Read all data once when using stochastic gradient descent
train_image, train_label, test_image, test_label, train_label_orig = get_data(dataset, total_data, dataset_file_path)
# This function takes a long time to complete,
# putting it outside of the sim loop because there is no randomness in the current way of computing the indices
indices_each_node_case = get_indices_each_node_case(n_nodes, MAX_CASE, train_label_orig)
listening_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
listening_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
listening_sock.bind((SERVER_ADDR, SERVER_PORT))
client_sock_all=[]
# Establish connections to each client, up to n_nodes clients
while len(client_sock_all) < n_nodes:
listening_sock.listen(5)
print("Waiting for incoming connections...")
(client_sock, (ip, port)) = listening_sock.accept()
print('Got connection from ', (ip,port))
print(client_sock)
client_sock_all.append(client_sock)
if single_run:
stat = CollectStatistics(results_file_name=single_run_results_file_path, is_single_run=True)
else:
stat = CollectStatistics(results_file_name=multi_run_results_file_path, is_single_run=False)
for sim in sim_runs:
if batch_size >= total_data: # Read data again for different sim. round
train_image, train_label, test_image, test_label, train_label_orig = get_data(dataset, total_data, dataset_file_path, sim_round=sim)
# This function takes a long time to complete,
indices_each_node_case = get_indices_each_node_case(n_nodes, MAX_CASE, train_label_orig)
for case in case_range:
for tau_setup in tau_setup_all:
stat.init_stat_new_global_round()
dim_w = model.get_weight_dimension(train_image, train_label)
w_global_init = model.get_init_weight(dim_w, rand_seed=sim)
w_global = w_global_init
w_global_min_loss = None
loss_min = np.inf
prev_loss_is_min = False
if tau_setup < 0:
is_adapt_local = True
tau_config = 1
else:
is_adapt_local = False
tau_config = tau_setup
if is_adapt_local or estimate_beta_delta_in_all_runs:
if tau_setup == -1:
control_alg = ControlAlgAdaptiveTauServer(is_adapt_local, dim_w, client_sock_all, n_nodes,
control_param_phi, moving_average_holding_param)
else:
raise Exception('Invalid setup of tau.')
else:
control_alg = None
for n in range(0, n_nodes):
indices_this_node = indices_each_node_case[case][n]
msg = ['MSG_INIT_SERVER_TO_CLIENT', model_name, dataset,
num_iterations_with_same_minibatch_for_tau_equals_one, step_size,
batch_size, total_data, control_alg, indices_this_node, read_all_data_for_stochastic,
use_min_loss, sim]
send_msg(client_sock_all[n], msg)
print('All clients connected')
# Wait until all clients complete data preparation and sends a message back to the server
for n in range(0, n_nodes):
recv_msg(client_sock_all[n], 'MSG_DATA_PREP_FINISHED_CLIENT_TO_SERVER')
print('Start learning')
time_global_aggregation_all = None
total_time = 0 # Actual total time, where use_fixed_averaging_slots has no effect
total_time_recomputed = 0 # Recomputed total time using estimated time for each local and global update,
# using predefined values when use_fixed_averaging_slots = true
it_each_local = None
it_each_global = None
is_last_round = False
is_eval_only = False
tau_new_resume = None
# Loop for multiple rounds of local iterations + global aggregation
while True:
print('---------------------------------------------------------------------------')
print('current tau config:', tau_config)
time_total_all_start = time.time()
for n in range(0, n_nodes):
msg = ['MSG_WEIGHT_TAU_SERVER_TO_CLIENT', w_global, tau_config, is_last_round, prev_loss_is_min]
send_msg(client_sock_all[n], msg)
w_global_prev = w_global
print('Waiting for local iteration at client')
w_global = np.zeros(dim_w)
loss_last_global = 0.0
loss_w_prev_min_loss = 0.0
received_loss_local_w_prev_min_loss = False
data_size_total = 0
time_all_local_all = 0
data_size_local_all = []
tau_actual = 0
for n in range(0, n_nodes):
msg = recv_msg(client_sock_all[n], 'MSG_WEIGHT_TIME_SIZE_CLIENT_TO_SERVER')
# ['MSG_WEIGHT_TIME_SIZE_CLIENT_TO_SERVER', w, time_all_local, tau_actual, data_size_local,
# loss_last_global, loss_w_prev_min_loss]
w_local = msg[1]
time_all_local = msg[2]
tau_actual = max(tau_actual, msg[3]) # Take max of tau because we wait for the slowest node
data_size_local = msg[4]
loss_local_last_global = msg[5]
loss_local_w_prev_min_loss = msg[6]
w_global += w_local * data_size_local
data_size_local_all.append(data_size_local)
data_size_total += data_size_local
time_all_local_all = max(time_all_local_all, time_all_local) #Use max. time to take into account the slowest node
if use_min_loss:
loss_last_global += loss_local_last_global * data_size_local
if loss_local_w_prev_min_loss is not None:
loss_w_prev_min_loss += loss_local_w_prev_min_loss * data_size_local
received_loss_local_w_prev_min_loss = True
w_global /= data_size_total
if True in np.isnan(w_global):
print('*** w_global is NaN, using previous value')
w_global = w_global_prev # If current w_global contains NaN value, use previous w_global
use_w_global_prev_due_to_nan = True
else:
use_w_global_prev_due_to_nan = False
if use_min_loss:
loss_last_global /= data_size_total
if received_loss_local_w_prev_min_loss:
loss_w_prev_min_loss /= data_size_total
loss_min = loss_w_prev_min_loss
if loss_last_global < loss_min:
loss_min = loss_last_global
w_global_min_loss = w_global_prev
prev_loss_is_min = True
else:
prev_loss_is_min = False
print("Loss of previous global value: " + str(loss_last_global))
print("Minimum loss: " + str(loss_min))
# If use_w_global_prev_due_to_nan, then use tau = 1 for next round
if not use_w_global_prev_due_to_nan:
if control_alg is not None:
# Only update tau if use_w_global_prev_due_to_nan is False
tau_new = control_alg.compute_new_tau(data_size_local_all, data_size_total,
it_each_local, it_each_global, max_time,
step_size, tau_config, use_min_loss)
else:
if tau_new_resume is not None:
tau_new = tau_new_resume
tau_new_resume = None
else:
tau_new = tau_config
else:
if tau_new_resume is None:
tau_new_resume = tau_config
tau_new = 1
# Calculate time
time_total_all_end = time.time()
time_total_all = time_total_all_end - time_total_all_start
time_global_aggregation_all = max(0.0, time_total_all - time_all_local_all)
print('Time for one local iteration:', time_all_local_all / tau_actual)
print('Time for global averaging:', time_global_aggregation_all)
if use_fixed_averaging_slots:
if isinstance(time_gen, (list,)):
t_g = time_gen[case]
else:
t_g = time_gen
it_each_local = max(0.00000001, np.sum(t_g.get_local(tau_actual)) / tau_actual)
it_each_global = t_g.get_global(1)[0]
else:
it_each_local = max(0.00000001, time_all_local_all / tau_actual)
it_each_global = time_global_aggregation_all
#Compute number of iterations is current slot
total_time_recomputed += it_each_local * tau_actual + it_each_global
#Compute time in current slot
total_time += time_total_all
stat.collect_stat_end_local_round(case, tau_actual, it_each_local, it_each_global, control_alg, model,
train_image, train_label, test_image, test_label, w_global,
total_time_recomputed)
# Check remaining resource budget (use a smaller tau if the remaining time is not sufficient)
is_last_round_tmp = False
if use_min_loss:
tmp_time_for_executing_remaining = total_time_recomputed + it_each_local * (tau_new + 1) + it_each_global * 2
else:
tmp_time_for_executing_remaining = total_time_recomputed + it_each_local * tau_new + it_each_global
if tmp_time_for_executing_remaining < max_time:
tau_config = tau_new
else:
if use_min_loss: # Take into account the additional communication round in the end
tau_config = int((max_time - total_time_recomputed - 2 * it_each_global - it_each_local) / it_each_local)
else:
tau_config = int((max_time - total_time_recomputed - it_each_global) / it_each_local)
if tau_config < 1:
tau_config = 1
elif tau_config > tau_new:
tau_config = tau_new
is_last_round_tmp = True
if is_last_round:
break
if is_eval_only:
tau_config = 1
is_last_round = True
if is_last_round_tmp:
if use_min_loss:
is_eval_only = True
else:
is_last_round = True
if use_min_loss:
w_eval = w_global_min_loss
else:
w_eval = w_global
stat.collect_stat_end_global_round(sim, case, tau_setup, total_time, model, train_image, train_label,
test_image, test_label, w_eval, total_time_recomputed)