forked from huahai111/3E-Solver-CAPTCHA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFixMatch_2.py
265 lines (217 loc) · 10.8 KB
/
FixMatch_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import torch
from torch import optim
import matplotlib
from torch.autograd import Variable
import pprint
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from datasets import load_datasets_mean_teacher
from models import CNNSeq2Seq
from util import compute_seq_acc, Seq2SeqLoss, ConsistentLoss, ConsistentLoss_MT_Temperature, \
get_current_consistency_weight
import random
import time
parser = argparse.ArgumentParser(description='PyTorch Captcha Training Using Mean-Teacher')
parser.add_argument('--dataset', default='google', type=str, help="the name of dataset")
parser.add_argument('--label', default="500.txt", type=str, help='the labels of captcha images used for training')
parser.add_argument('--batch-size', default=32, type=int, help='batch size for training and test')
parser.add_argument('--secondary-batch-size', default=64, type=int, help='batch size for unlabel')
parser.add_argument('--unlabeled-number', default=5000, type=int, help='the number of unlabeled images')
parser.add_argument('--threshold', default=0.95, type=float, help='pseudo label threshold')
parser.add_argument('--epoch', default=700, type=int, help='the number of training epochs')
parser.add_argument('--t', default=0.5, type=float, help='temperature of MT')
parser.add_argument('--weight', default=100.0, type=float, help='the weight of consistency loss')
parser.add_argument('--teachforce', action="store_false", help='whether to use teaching force(Default: True)')
parser.add_argument('--lr', default=0.02, type=float, help='learning rate')
parser.add_argument('--seed', default=42, type=int, help='running seed')
args = parser.parse_args()
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
torch.backends.cudnn.benchmark = True
pprint.pprint(args)
USE_CUDA = torch.cuda.is_available()
LR = args.lr
NUM_EPOCHS = args.epoch
dataloader_train_labeled, dataloader_train_nolabeled, dataloader_test, id2token, MAXLEN, _ = load_datasets_mean_teacher(
args)
print("token:", "".join(list(id2token.values())))
model = CNNSeq2Seq(vocab_size=len(id2token), max_len=MAXLEN)
model_ema = CNNSeq2Seq(vocab_size=len(id2token), max_len=MAXLEN)
class_criterion = Seq2SeqLoss()
consistent_criterion = ConsistentLoss(args.threshold)
consistent_criterion_mt = ConsistentLoss_MT_Temperature(args.t)
if USE_CUDA:
model = model.cuda()
model_ema = model_ema.cuda()
class_criterion = class_criterion.cuda()
consistent_criterion = consistent_criterion.cuda()
consistent_criterion_mt = consistent_criterion_mt.cuda()
for param_main, param_ema in zip(model.parameters(), model_ema.parameters()):
param_ema.data.copy_(param_main.data) # initialize
param_ema.requires_grad = False # not update by gradient
params = list(filter(lambda p: p.requires_grad, model.parameters()))
optimizer = optim.SGD(params, lr=LR, momentum=0.9, weight_decay=5e-4, nesterov=True)
train_loss_class = []
train_loss_consistency = []
train_loss_consistency_mt = []
train_accclevel = []
train_accuracy = []
test_class_loss = []
test_accclevel = []
test_accuracy = []
test_class_loss_ema = []
test_accclevel_ema = []
test_accuracy_ema = []
for epoch in range(NUM_EPOCHS):
time_epoch = time.time()
loss_1 = loss_2 = loss_mt = accuracy = accclevel = 0
iter_label = dataloader_train_labeled.__iter__()
for num_iter, (inputs_u_w, inputs_u_s) in enumerate(dataloader_train_nolabeled):
inputs_x, targets_x = iter_label.next()
if USE_CUDA:
targets_x = targets_x.cuda()
inputs_x = inputs_x.cuda()
inputs_u_w = inputs_u_w.cuda()
inputs_u_s = inputs_u_s.cuda()
batch_size = inputs_x.size(0)
if args.teachforce:
logits_x = model.forward_train(inputs_x, targets_x)
logits_u_w = model_ema.forward_test(inputs_u_w)
logits_u_s = model.forward_test(inputs_u_s)
else:
logits_x = model.forward_test(inputs_x)
logits_u_w = model_ema.forward_test(inputs_u_w)
logits_u_s = model.forward_test(inputs_u_s)
optimizer.zero_grad()
Lx = class_criterion(logits_x, targets_x)
Lu = 2 * consistent_criterion(logits_u_w.detach(), logits_u_s)
Lu_mt = get_current_consistency_weight(args.weight, args.epoch - 100, epoch) * consistent_criterion_mt(
logits_u_s, logits_u_w.detach())
max_len = targets_x.size(1)
acccl, acc = compute_seq_acc(logits_x, targets_x, max_len)
acccl /= args.batch_size
acc /= args.batch_size
loss_all = Lx + Lu + Lu_mt
loss_all.backward()
optimizer.step()
for ema_param, param in zip(model_ema.parameters(), model.parameters()):
ema_param.data.mul_(0.999).add_(1 - 0.999, param.data)
loss_1 += Lx.item()
loss_2 += Lu.item()
loss_mt += Lu_mt.item()
accclevel += acccl
accuracy += acc
train_loss_class.append(loss_1 / len(dataloader_train_nolabeled))
train_loss_consistency.append(loss_2 / len(dataloader_train_nolabeled))
train_loss_consistency_mt.append(loss_mt / len(dataloader_train_nolabeled))
train_accclevel.append(accclevel / len(dataloader_train_nolabeled))
train_accuracy.append(accuracy / len(dataloader_train_nolabeled))
print("{} epoch train\n"
"class loss: {} consistent loss {} consistent loss mt {}\n"
"accuracy {} accclevel {}".format(epoch, train_loss_class[-1], train_loss_consistency[-1],
train_loss_consistency_mt[-1], train_accuracy[-1],
train_accclevel[-1]))
model = model.eval()
loss = accuracy = accclevel = total = 0
for num_iter, (x, y) in enumerate(dataloader_test):
x = Variable(x)
y = Variable(y)
if USE_CUDA:
x = x.cuda()
y = y.cuda()
outputs = model.forward_test(x)
loss_batch = class_criterion(outputs, y)
max_len = y.size(1)
acccl, acc = compute_seq_acc(outputs, y, max_len)
loss += loss_batch.item()
accclevel += acccl
accuracy += acc
total += y.size(0)
test_class_loss.append(loss / len(dataloader_test))
test_accclevel.append(accclevel / total)
test_accuracy.append(accuracy / total)
print("test loss: {}\n"
"accuracy {} accclevel {}".format(test_class_loss[-1], test_accuracy[-1], test_accclevel[-1]))
print(f"{accuracy}/{total}")
model = model.train()
model_ema = model_ema.eval()
loss = accuracy = accclevel = total = 0
for num_iter, (x, y) in enumerate(dataloader_test):
x = Variable(x)
y = Variable(y)
if USE_CUDA:
x = x.cuda()
y = y.cuda()
outputs = model_ema.forward_test(x)
loss_batch = class_criterion(outputs, y)
max_len = y.size(1)
acccl, acc = compute_seq_acc(outputs, y, max_len)
loss += loss_batch.item()
accclevel += acccl
accuracy += acc
total += y.size(0)
test_class_loss_ema.append(loss / len(dataloader_test))
test_accclevel_ema.append(accclevel / total)
test_accuracy_ema.append(accuracy / total)
print("test loss: {}\n"
"accuracy {} accclevel {}".format(test_class_loss_ema[-1], test_accuracy_ema[-1], test_accclevel_ema[-1]))
print(f"{accuracy}/{total}")
model_ema = model_ema.train()
print(f"epoch time {time.time()-time_epoch}\n")
if (epoch + 1) % 100 == 0:
fig = plt.figure(figsize=(20, 10))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.plot(train_loss_class, 'r', label='train_class_loss')
ax1.plot(train_loss_consistency, 'y', label='train_consistency_loss')
ax1.plot(train_loss_consistency_mt, 'm', label='train_loss_consistency_mt')
ax1.plot(test_class_loss, 'b', label='test_class_loss')
ax1.plot(test_class_loss_ema, 'g', label='test_class_loss_ema')
ax1.legend()
ax2.plot(test_accuracy, 'b', label='test_accuracy')
ax2.plot(test_accuracy_ema, 'g', label='test_accuracy_ema')
ax2.plot(train_accuracy, 'r', label='train_accuracy')
ax2.legend()
test_acc_array = np.array(test_accuracy_ema)
max_indx = np.argmax(test_acc_array)
show_max = '[' + str(max_indx) + " " + str(test_acc_array[max_indx].item()) + ']'
ax2.annotate(show_max, xytext=(max_indx, test_acc_array[max_indx].item()),
xy=(max_indx, test_acc_array[max_indx].item()))
path = "FixMatch_2_" + args.dataset + "_" + str(args.label) + "_" + str(args.unlabeled_number) + "_" + str(
args.teachforce) + "_" + str(args.weight) + "_" + str(args.threshold) + "_" + str(args.t) + "_" + str(
args.seed)
fig.savefig("result/" + path + ".png")
np.save("result/" + path + "_test_accuracy_ema.npy", np.array(test_accuracy_ema))
np.save("result/" + path + "_train_accuracy.npy", np.array(train_accuracy))
np.save("result/" + path + "_test_class_loss_ema.npy", np.array(test_class_loss_ema))
np.save("result/" + path + "_train_loss_class.npy", np.array(train_loss_class))
fig = plt.figure(figsize=(20, 10))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.plot(train_loss_class, 'r', label='train_class_loss')
ax1.plot(train_loss_consistency, 'y', label='train_consistency_loss')
ax1.plot(train_loss_consistency_mt, 'm', label='train_loss_consistency_mt')
ax1.plot(test_class_loss, 'b', label='test_class_loss')
ax1.plot(test_class_loss_ema, 'g', label='test_class_loss_ema')
ax1.legend()
ax2.plot(test_accuracy, 'b', label='test_accuracy')
ax2.plot(test_accuracy_ema, 'g', label='test_accuracy_ema')
ax2.plot(train_accuracy, 'r', label='train_accuracy')
ax2.legend()
test_acc_array = np.array(test_accuracy_ema)
max_indx = np.argmax(test_acc_array)
show_max = '[' + str(max_indx) + " " + str(test_acc_array[max_indx].item()) + ']'
ax2.annotate(show_max, xytext=(max_indx, test_acc_array[max_indx].item()),
xy=(max_indx, test_acc_array[max_indx].item()))
path = "FixMatch_2_" + args.dataset + "_" + str(args.label) + "_" + str(args.unlabeled_number) + "_" + str(
args.teachforce) + "_" + str(args.weight) + "_" + str(args.threshold) + "_" + str(args.t) + "_" + str(args.seed)
fig.savefig("result/" + path + ".png")
np.save("result/" + path + "_test_accuracy_ema.npy", np.array(test_accuracy_ema))
np.save("result/" + path + "_train_accuracy.npy", np.array(train_accuracy))
np.save("result/" + path + "_test_class_loss_ema.npy", np.array(test_class_loss_ema))
np.save("result/" + path + "_train_loss_class.npy", np.array(train_loss_class))