forked from huahai111/3E-Solver-CAPTCHA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
187 lines (143 loc) · 6.37 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
import string
import glob
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from augment import weak, strong, normalize
import random
def load_datasets(args):
label_dict = get_label_dict(args)
train_filenames = glob.glob("./dataset/" + args.dataset + "/train/*.*")
train_filenames = [train_filename for train_filename in train_filenames if
train_filename.split("/")[-1] in label_dict]
test_filenames = glob.glob("./dataset/" + args.dataset + "/test/*.*")
dataloader_train, id2token = get_dataloader(train_filenames, label_dict, args, train=True, label=True)
dataloader_test, _ = get_dataloader(test_filenames, label_dict, args, train=False, label=True)
MAXLEN = max([len(value) for value in label_dict.values()])
return dataloader_train, dataloader_test, id2token, MAXLEN + 2
def load_datasets_mean_teacher(args):
label_dict = get_label_dict(args)
labeled_train_filenames = glob.glob("./dataset/" + args.dataset + "/train/*.*")
labeled_train_filenames = [train_filename for train_filename in labeled_train_filenames if
train_filename.split("/")[-1] in label_dict]
nolabeled_train_filenames = glob.glob("./dataset/" + args.dataset + "/buchong/*.*")
nolabeled_train_filenames = random.sample(nolabeled_train_filenames, args.unlabeled_number) \
+ labeled_train_filenames
test_filenames = glob.glob("./dataset/" + args.dataset + "/test/*.*")
labeled_train_filenames = sorted(labeled_train_filenames)
nolabeled_train_filenames = sorted(nolabeled_train_filenames)
test_filenames = sorted(test_filenames)
print(len(labeled_train_filenames))
print(len(nolabeled_train_filenames))
print(len(test_filenames))
dataloader_train_nolabeled, _ = get_dataloader(nolabeled_train_filenames, label_dict, args, train=True, label=False)
dataloader_test, _ = get_dataloader(test_filenames, label_dict, args, train=False, label=True)
dataloader_train_labeled, id2token = get_dataloader(labeled_train_filenames, label_dict, args, train=True,
label=True, loader_len=len(dataloader_train_nolabeled))
MAXLEN = max([len(value) for value in label_dict.values()])
MINLEN = min([len(value) for value in label_dict.values()])
return dataloader_train_labeled, dataloader_train_nolabeled, dataloader_test, id2token, MAXLEN + 2, MINLEN + 2
def get_label_dict(args):
label_path = './dataset/' + args.dataset + '/label/' + args.label
f = open(label_path, 'r')
lines = f.read().strip().split("\n")
label_dict = {line.split(" ")[0]: line.split(" ")[1] for line in lines}
f.close()
return label_dict
def get_vocab(label_dict):
all_labels = "".join([value for value in label_dict.values()])
if all_labels.isdigit():
return string.digits
elif all_labels.isalpha():
return string.ascii_lowercase
elif all_labels.isalnum():
return string.digits + string.ascii_lowercase
elif all_labels.replace("-", "").isalnum():
return string.digits + string.ascii_lowercase + '-'
else:
raise Exception("Label files must consist only of numbers and English letters")
def get_dataloader(filenames, label_dict, args, train, label, loader_len=None):
if train and label:
assert loader_len is not None
else:
assert loader_len is None
MAXLEN = max([len(value) for value in label_dict.values()])
TARGET_HEIGHT = 64
TARGET_WIDTH = 128
vocab = get_vocab(label_dict)
vocab += ' '
id2token = {k + 1: v for k, v in enumerate(vocab)}
id2token[0] = '^'
id2token[len(vocab) + 1] = '$'
token2id = {v: k for k, v in id2token.items()}
img_buffer = np.zeros((len(filenames), TARGET_HEIGHT, TARGET_WIDTH, 3), dtype=np.uint8)
text_buffer = []
for i, filename in enumerate(filenames):
captcha_image = Image.open(filename).resize((TARGET_WIDTH, TARGET_HEIGHT), Image.ANTIALIAS)
if captcha_image.mode != 'RGB':
captcha_image = captcha_image.convert("RGB")
captcha_array = np.array(captcha_image)
img_buffer[i] = captcha_array
if train:
if label:
text = label_dict[filename.split("/")[-1]]
else:
text = filename.split("/")[-1].split(".")[0]
if label:
text = ("^" + text + "$")
text_buffer.append([token2id[i] for i in text.ljust(MAXLEN + 2)])
else:
text_buffer.append([-1] * (MAXLEN + 2))
image = img_buffer.astype(np.uint8)
text = np.array(text_buffer)
if label:
batch_size = args.batch_size
else:
batch_size = args.secondary_batch_size
if not label:
dataset = UnlabelData(image)
dataloader = DataLoader(dataset, batch_size, shuffle=True, drop_last=True, num_workers=4)
elif train:
dataset = LabelData(image, text, loader_len * batch_size)
dataloader = DataLoader(dataset, batch_size, shuffle=True, drop_last=True, num_workers=4)
else:
dataset = TestData(image, text)
dataloader = DataLoader(dataset, batch_size, shuffle=False, drop_last=False, num_workers=4)
return dataloader, id2token
class LabelData(Dataset):
def __init__(self, image, text, dataset_len):
self.image = image
self.text = text
self.dataset_len = dataset_len
def __len__(self):
return int(self.dataset_len)
def __getitem__(self, index):
index = index % len(self.image)
img = Image.fromarray(self.image[index])
img = normalize(weak(img))
lb = self.text[index]
sample = (img, lb)
return sample
class UnlabelData(Dataset):
def __init__(self, image):
self.image = image
def __len__(self):
return len(self.image)
def __getitem__(self, index):
img = Image.fromarray(self.image[index])
img_1 = normalize(weak(img))
img_2 = normalize(strong(img))
sample = (img_1, img_2)
return sample
class TestData(Dataset):
def __init__(self, image, text):
self.image = image
self.text = text
def __len__(self):
return len(self.image)
def __getitem__(self, index):
img = Image.fromarray(self.image[index])
img = normalize(img)
lb = self.text[index]
sample = (img, lb)
return sample