forked from huahai111/3E-Solver-CAPTCHA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
179 lines (133 loc) · 5.67 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch.nn as nn
import torch
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
from torch.nn import Parameter
import math
USE_CUDA = torch.cuda.is_available()
class CNN(nn.Module):
"""
input: [batch_size, 3, 64, 128]
output: [batch_size, 32, 256]
"""
def __init__(self):
super(CNN, self).__init__()
self.resblk_1 = ResBlk(3, 32)
self.maxpool_1 = nn.MaxPool2d(kernel_size=2)
self.dropout_1 = nn.Dropout(0.1)
self.resblk_2 = ResBlk(32, 64)
self.maxpool_2 = nn.MaxPool2d(kernel_size=2)
self.dropout_2 = nn.Dropout(0.1)
self.resblk_3 = ResBlk(64, 128)
self.maxpool_3 = nn.MaxPool2d(kernel_size=(2, 1))
self.dropout_3 = nn.Dropout(0.1)
self.resblk_4 = ResBlk(128, 256)
self.maxpool_4 = nn.MaxPool2d(kernel_size=(2, 1))
self.dropout_4 = nn.Dropout(0.1)
self.resblk_5 = ResBlk(256, 256)
self.maxpool_5 = nn.MaxPool2d(kernel_size=(4, 1))
self.dropout_5 = nn.Dropout(0.1)
def forward(self, x):
out = x
out = self.resblk_1(out)
out = self.maxpool_1(out)
out = self.dropout_1(out)
out = self.resblk_2(out)
out = self.maxpool_2(out)
out = self.dropout_2(out)
out = self.resblk_3(out)
out = self.maxpool_3(out)
out = self.dropout_3(out)
out = self.resblk_4(out)
out = self.maxpool_4(out)
out = self.dropout_4(out)
out = self.resblk_5(out)
out = self.maxpool_5(out)
out = self.dropout_5(out)
out = out.squeeze(2)
out = out.transpose(1, 2)
return out
class Encoder(nn.Module):
"""
input: [batch_size, 32, 256]
output: [batch_size, 32, 128]
"""
def __init__(self, num_rnn_layers=2, rnn_hidden_size=128, dropout=0.5):
super(Encoder, self).__init__()
self.num_rnn_layers = num_rnn_layers
self.rnn_hidden_size = rnn_hidden_size
self.gru = nn.GRU(256, rnn_hidden_size, num_rnn_layers,
batch_first=True,
dropout=dropout)
def forward(self, x):
batch_size = x.size(0)
h0 = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.rnn_hidden_size))
if USE_CUDA:
h0 = h0.cuda()
out, hidden = self.gru(x, h0)
return out
class HybirdDecoder(nn.Module):
def __init__(self, vocab_size, hidden_size=128, num_rnn_layers=2, dropout=0.5):
super(HybirdDecoder, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_rnn_layers = num_rnn_layers
self.attn = DotProductAttentionLayer()
self.gru = nn.GRU(hidden_size, hidden_size,
num_rnn_layers, batch_first=True,
dropout=dropout)
self.wc = nn.Linear(2 * hidden_size, hidden_size)
self.tanh = nn.Tanh()
self.embedding = nn.Embedding(vocab_size, hidden_size)
def forward_train(self, encoder_outputs, max_len, y):
batch_size = encoder_outputs.size(0)
last_hidden = Variable(torch.zeros(self.num_rnn_layers, batch_size, self.hidden_size))
if USE_CUDA:
last_hidden = last_hidden.cuda()
input = y[:, :max_len - 1] # [batch, max_len-1]
embed_input = self.embedding(input) # [batch, max_len-1, 128]
query, _ = self.gru(embed_input, last_hidden) # [batch, max_len-1, 128]
key = encoder_outputs # [batch, 32, 128]
value = encoder_outputs # [batch, 32, 128]
weighted_context = self.attn(query, key, value) # [batch, max_len-1, 128]
output = self.tanh(self.wc(torch.cat((query, weighted_context), 2))) # [batch, max_len-1, 128]
return output
def forward_step(self, input, last_hidden, encoder_outputs):
embed_input = self.embedding(input)
output, hidden = self.gru(embed_input.unsqueeze(1), last_hidden)
output = output.squeeze(1)
query = output.unsqueeze(1) # [batch, 1, 128]
key = encoder_outputs # [batch, 32, 128]
value = encoder_outputs # [batch, 32, 128]
weighted_context = self.attn(query, key, value).squeeze(1)
output = self.tanh(self.wc(torch.cat((output, weighted_context), 1)))
return output, hidden
class ResBlk(nn.Module):
def __init__(self, ch_in, ch_out):
super(ResBlk, self).__init__()
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.bn2 = nn.BatchNorm2d(ch_out)
self.ch_out = ch_out
self.ch_in = ch_in
if ch_out != ch_in:
self.extra_conv = nn.Conv2d(ch_in, ch_out, kernel_size=(1, 1), stride=(1, 1))
self.extra_bn = nn.BatchNorm2d(ch_out)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
if self.ch_out != self.ch_in:
x = self.extra_conv(x)
x = self.extra_bn(x)
out = x + out
return out
class DotProductAttentionLayer(nn.Module):
def __init__(self):
super(DotProductAttentionLayer, self).__init__()
def forward(self, query, key, value):
logits = torch.matmul(query, key.permute(0, 2, 1)) # [len, 256]*[256, 32]=[len, 32]
alpha = F.softmax(logits, dim=-1)
weighted_context = torch.matmul(alpha, value) # [len, 32] * [32, 256]=[len, 256]
return weighted_context