-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPatients_GSE157256.Rmd
451 lines (399 loc) · 19.9 KB
/
Patients_GSE157256.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
---
title: "GSE157256"
author: "Christina Schmidt"
date: "12 April 2021"
output:
html_document:
toc: true
toc_depth: 3
toc_float: true
editor_options:
chunk_output_type: console
---
```{r, message=FALSE, warning=FALSE}
library(tidyverse) # used for data manipulation
library(rmarkdown) # used for paged_table function
library(DESeq2)
```
# Introduction - Dataset
The dataset used here was produced by the Linhean lab and published as part of the [paper](https://pubmed.ncbi.nlm.nih.gov/33402335/) of Crooks. et. al. 2021. The RNA-seq data of HLRCC patients tumours/adjacent tissue (5 primary tumours and paired adjacent tissue, and 16 metastatic tumours) were downloaded from the GEO database, under accession [GSE157256](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157256).\
```{r}
sampleinfo <-read.csv("InputData_Patients_GSE157256/SampleInfo_GSE157256.csv", header=TRUE)
```
# Quality control: Raw count data
## The data
For this the raw counts "GSE157256_RSEM_counts.txt" have been downloaded.\
Filtering the genes: I will keep all genes where the total number of reads across all samples is > than 5.
```{r, message=FALSE, warning=FALSE}
df_raw <- read.delim("InputData_Patients_GSE157256/GSE157256_RSEM_counts.txt", sep = "")%>%
separate(col = 1, into = c("ENSEMBL", "Gene"), sep = "\\|")
#Filtering the genes: keep all genes where the rowSum >= 5
#Firstformat the table:
countdata <- df_raw[,-c(1:2)]%>%
as.matrix()
# Filtering the data:
dim(countdata)
keep <- rowSums(countdata) >= 5
countdata <- countdata[keep,]
dim(countdata)
```
## Library sizes bar plot
First, we plot how many reads each sample has. Whilst normalisation can account for imbalance in coverage across the samples, extreme differences may be indicative of underlying problems in the samples.
```{r, message=FALSE, warning=FALSE}
librarySizes <- colSums(countdata)
barplot(librarySizes,
names=names(librarySizes),
las=2,
main="Barplot of library sizes")
abline(h=20e6, lty=2)
```
## Count distribution boxplots
Count data is not normally distributed, so if we want to examine the distributions of the raw counts it is helpful to transform the data on to a log scale. Typically we use a `log2` transformation, however, because the data is count data and will contain many `0`s we need to add a count of 1 to every
value in order to prevent attempting `log2(0)` from creating errors.\
The boxplots show that overall the density distributions of raw log-intensities are a bit variable. If a sample is really far above or below the sample median (horizontal line) this could cause problems downstream, so we need to keep this in mind
```{r, message=FALSE, warning=FALSE}
# Get log2 counts per million
logcounts <- log2(countdata + 1)
#statusCol <- as.numeric(factor(sampleinfo$TissueType)) + 1
# Check distributions of samples using boxplots
boxplot(logcounts,
xlab="",
ylab="Log2(Counts)",
las=2
#col=statusCol
)
# Let's add a blue horizontal line that corresponds to the median logCPM
abline(h=median(as.matrix(logcounts)), col="black")
```
## PCA
To run the PCA we should first normalise our data for library size and transform to a log scale using DESeq2 command `rlog` that performs a log2 scale transformation in a way that compensates for differences between samples for genes with low read count and also normalizes between samples for library size.\
*[Information](http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#count-data-transformations) about `rlog`, it's alternative `vst` and the comparison between the two.\
\
Since we are not interested in the metastatic samples, we will remove them from this analysis.\
Here we can see that the primary tumour and adjacent tissue samples cluster nicely apart on PC1.\
```{r ,message=FALSE, warning=FALSE}
library(ggfortify)
RawCounts <- read.delim("InputData_Patients_GSE157256/GSE157256_RSEM_counts.txt", sep = "")
RawCounts <- as.data.frame(t(RawCounts[,-1]))%>%
rownames_to_column("Linehan_SampleID_R")
RawCounts <- merge(sampleinfo,RawCounts, by=c(1))
#Extract the Data for the downstream comparisons
#Remove metastatic samples
RawCounts_TvWT <- RawCounts%>%
subset(TissueType!="Metastasis")
row.names(RawCounts_TvWT) <- RawCounts_TvWT$GSM_SampleID
sampleinfo_TvWT <-RawCounts_TvWT[,c(1:7)]
RawCounts_TvWT <- as.data.frame(t(RawCounts_TvWT[,-c(1:7)]))
# data normalization
rlogcounts <- t(rlog(as.matrix(RawCounts_TvWT)))
rlogcounts <- cbind(rownames(rlogcounts), data.frame(rlogcounts, row.names=NULL))
rlogcounts <- merge(x=sampleinfo,y=rlogcounts, by.x=3, by.y=1)
rownames(rlogcounts) <- rlogcounts$Linehan_SampleID_R
# run PCA
PCA<- autoplot (prcomp(rlogcounts[,-c(1:7)]),
data= rlogcounts,
colour = "TissueType", #colour = row including the sample information to colour code
label=T,
label.size=3,
label.repel = TRUE,
#loadings=T, #draws Eigenvectors
#loadings.label = TRUE,
#loadings.label.vjust = 1.2,
#loadings.label.size=2,
#loadings.colour="grey10",
#loadings.label.colour="grey10",
color = "black",
fill = "TissueType",
alpha = 0.3,
shape = 21,
size = 8
) +
ggtitle("rlog normalised countdata", subtitle = "PCA color = Tissue" )
plot(PCA)
```
# Differential expression analysis
## Primary_Tumor versus Adjacent_Normal
For this we also use the raw counts "GSE157256_RSEM_counts.txt".
DESeq2:\
- Filtering the genes: keep all genes where the rowSum >= 5\
- We performed the DESeq analysis setting the significance level for independent filtering to 0.05.
```{r,message=FALSE, warning=FALSE}
#The Rawcounts data:
RawCounts <- read.delim("InputData_Patients_GSE157256/GSE157256_RSEM_counts.txt", sep = "")
RawCounts <- as.data.frame(t(RawCounts[,-1]))%>%
rownames_to_column("Linehan_SampleID_R")
RawCounts <- merge(sampleinfo,RawCounts, by=c(1))
#Extract the Data for the downstream comparisons
#Tumour versus Adjacent
RawCounts_TvWT <- RawCounts%>%
subset(TissueType!="Metastasis")
row.names(RawCounts_TvWT) <- RawCounts_TvWT$GSM_SampleID
sampleinfo_TvWT <-RawCounts_TvWT[,c(1:7)]
RawCounts_TvWT <- as.data.frame(t(RawCounts_TvWT[,-c(1:7)]))
#Filtering the genes: keep all genes where the rowSum >= 5
#First we want to format the table:
countdata <- RawCounts_TvWT%>%
as.matrix()
# Filtering the data:
dim(countdata)
keep <- rowSums(countdata) >= 5
countdata <- countdata[keep,]
dim(countdata)
# first lets check that our rows and columns match
all(sampleinfo_TvWT$GSM_SampleID == colnames(countdata))
# Safe the raw count matrix:
write.csv(countdata, "OutputData_Patients_GSE157256/Filtered_RawCountMatrix_GSE157256.csv")
# Create a DESeqDataSet object with the raw data:
# Convert the counts to DESeqDataSet Object. It is an object used by `DESeq2` to store count data -->It has a number of slots for storing count data, sample information, the model design for the differential expression analysis, and various other parameters about the data
ddsObj.raw <- DESeqDataSetFromMatrix(countData = countdata,
colData = sampleinfo_TvWT,
design = ~ TissueType)
# DESeq2:
# 1. Calculate the "median ratio" normalisation size factors:
ddsObj <- estimateSizeFactors(ddsObj.raw)
sizeFactors(ddsObj)
#2.Estimate dispersion (Gene wise dispersion)
ddsObj <- estimateDispersions(ddsObj)
#3.Apply Negative Binomial GLM fitting and calculate Wald statistics
ddsObj <- nbinomWaldTest(ddsObj)
# Generate a results table
#--> We can generate a table of differential expression results from the DDS object using the `results` function of DESeq2. res <- results(ddsObj, alpha=0.05) # default significance level for independent filtering is `0.1, we use 0.05!
res_TvWT <- results(ddsObj, alpha=0.05, contrast=c("TissueType","Primary_Tumor","Adjacent_Normal"))
resdata_TvWT<- as.data.frame(res_TvWT)
TvWT <- as.data.frame(res_TvWT)%>%
rownames_to_column("ID")
TvWT <- separate(data = TvWT, col = ID, into = c("ENSEMBL", "Gene"), sep = "\\|")
#Remove duplicated genes: Function
RemoveDublons <-function(MyData, OutputFileName){
MyData <- MyData[complete.cases(MyData),]
print("Number of genes in CS_DESeq_TvWT.csv dataset:")
print(nrow(MyData))
doublons <- as.character(MyData[duplicated(MyData$Gene),"Gene"])
# Keep the entry with the greatest Log2FC:
MyData$absLogFC <- abs(MyData$log2FoldChange)
MyData <- MyData[ order(MyData$absLogFC), ]
MyData_Select <- MyData[!duplicated(MyData$Gene),]
print("Number of genes after removing duplicated gene names from dataset:")
print(nrow(MyData_Select))
#Safe:
write.csv(MyData_Select, paste("",OutputFileName), row.names= TRUE)
OutputFileName <- MyData_Select
}
TvWT_ND <- RemoveDublons(MyData= TvWT,
OutputFileName="DESeq_TvWT_Patients_GSE157256.csv")
```
# Gene set enrichment analysis (GSEA)
The analysis below are done using the DESeq2 result of the comparison primary tumour versus adjacent normal.\
\
For this we use gene set collections of biological pathways or molecular network information about a biological system, such as the Molecular signatures database (MsigDB) to find sets of altered signalling pathways or processes.\
\
GSEA was run using the t-value of the DESeq2 results for ranking.\
First I downloaded the signatures of interest from the [MsigDB](http://software.broadinstitute.org/gsea/msigdb) including "KEGG", "Reactome", "Biocarta", "Hallmarks" and "NFE2L2" (=NRF2) as well as "EMT" (= manually curated EMT-signature based on [Taube et al.](https://pubmed.ncbi.nlm.nih.gov/20713713/).).\
In order to be able to compare the results of the different signatures of interest, we combined the signatures and run them together.
```{r, message=FALSE, warning=FALSE}
df_GSEA <- read.csv(" DESeq_TvWT_Patients_GSE157256.csv")
#Prepare data matrix for GSEA:
Column_Gene <- as.character(df_GSEA$Gene)
Column_tval <- as.numeric(df_GSEA$stat)
MyData_Extracted <- data.frame(cbind(Column_Gene, Column_tval), stringsAsFactors = F)
MyData_Extracted$Column_tval <- as.numeric(MyData_Extracted$Column_tval)
t_val <- as.numeric(MyData_Extracted$Column_tval)#Make the data into a vector
names(t_val) <- MyData_Extracted$Column_Gene
#Load the Pathways
library(fgsea)
library(GSEABase)
gmt_to_csv <- function(gmtfile, fast = T){
if(fast)
{
genesets = GSEABase::getGmt(con = gmtfile)
genesets = unlist(genesets)
gene_to_term =plyr::ldply(genesets,function(geneset){
temp <- geneIds(geneset)
temp2 <- setName(geneset)
temp3 <- as.data.frame(cbind(temp,rep(temp2,length(temp))))
},.progress = plyr::progress_text())
names(gene_to_term) <- c("gene","term")
return(gene_to_term[complete.cases(gene_to_term),])
}
else
{
genesets = getGmt(con = gmtfile)
genesets = unlist(genesets)
gene_to_term <- data.frame(NA,NA)
names(gene_to_term) <- c("gene","term")
for (geneset in genesets)
{
temp <- geneIds(geneset)
temp2 <- setName(geneset)
temp3 <- as.data.frame(cbind(temp,rep(temp2,length(temp))))
names(temp3) <- c("gene","term")
gene_to_term <- rbind(gene_to_term,temp3)
}
return(gene_to_term[complete.cases(gene_to_term),])
}
}
KEGG_Human <- gmt_to_csv("Input_MSigDB_Signatures/c2.cp.kegg.v6.2.symbols.gmt")
Reactome_Human <- gmt_to_csv("Input_MSigDB_Signatures/c2.cp.reactome.v6.2.symbols.gmt")
Biocarta_Human <- gmt_to_csv("Input_MSigDB_Signatures/c2.cp.biocarta.v6.2.symbols.gmt")
Hallmarks_Human <- gmt_to_csv("Input_MSigDB_Signatures/h.all.v6.2.symbols.gmt")
NRF2_Human <- gmt_to_csv("Input_MSigDB_Signatures/NFE2L2.gmt")
EMT_Human <-read.csv("Input_MSigDB_Signatures/EMT-signature.csv")
#Run the GSEA analysis
pathways <- rbind(KEGG_Human, Reactome_Human, Biocarta_Human, Hallmarks_Human,NRF2_Human,EMT_Human)
pathway_list <- list()
for(pathway in unique(pathways$term))
{pathway_list[[pathway]] <- as.character(pathways[pathways$term == pathway, 1])}
gsea_result1 <- fgsea(pathways = pathway_list, stats = t_val, nperm = 1000)
write_csv(gsea_result1[,c(-8)], "GSEA_result_KEGG-Hallmark-Reactome-Biocarta-NRF2-EMT_Patients_GSE157256.csv")
```
## GSEA Volcano Plots
We represented the results in a volcano plot. Important to note, for GSEA results a p.adj of < 25% (0.25) is considered significant.\
```{r,message=FALSE, warning=FALSE}
#Load the Data:
GSEA_Patients <-read.csv("OutputData_Patients_GSE157256/GSEA_result_KEGG-Hallmark-Reactome-Biocarta-NRF2-EMT_Patients_GSE157256.csv")
Patients <- read.csv("OutputData_Patients_GSE157256/DESeq_TvWT_Patients_GSE157256.csv")
#Establish the VolcanoPlot functions
library(ggrepel)
library(EnhancedVolcano)
VolcanoPlot_RNAseq_Patients <- function(Signature_Merge_RNA, Signature, OutputPlotName, NES, p.adj, Title){
VolcanoPlot <-EnhancedVolcano (Signature_Merge_RNA,
lab = Signature_Merge_RNA$symbol,#Metabolite name
selectLab = c("CDC20", "CDC45", "MYC", "KPNA2", "CDKN2A", "CDKN1A"),
x = "log2FoldChange",#Log2FC
y = "padj",#p-value or q-value
xlab = bquote(~Log[2]~ "FC"),
ylab = bquote(~-Log[10]~p.adj),#(~-Log[10]~adjusted~italic(P))
pCutoff = 0.05,
FCcutoff = 0.5,#Cut off Log2FC, automatically 2
pointSize = 4,
labSize = 3,
labFace = 'bold',
boxedLabels = FALSE,
titleLabSize = 12,
subtitleLabSize = 8,
col=c("darkseagreen3", "mediumaquamarine", "mediumaquamarine", "cyan4"),
colAlpha = 0.5,
title=(file=paste("RNAseq:", Title, " " ,sep="")),
subtitle = (file=paste("", OutputPlotName, " (NES=", NES, "p.adj.=", p.adj, ")",sep="")),
caption = paste0("total = ", nrow(Signature_Merge_RNA), " genes of ", nrow(Signature), " genes in pathway"),
xlim = c((((Reduce(min,Signature_Merge_RNA$log2FoldChange))))-0.3,(((Reduce(max,Signature_Merge_RNA$log2FoldChange))))+0.3),
ylim = c(0,((-log10(Reduce(min,Signature_Merge_RNA$padj))))+0.2),
drawConnectors = TRUE,
widthConnectors = 0.5,
colConnectors = "black",
cutoffLineType = "dashed",
cutoffLineCol = "black",
cutoffLineWidth = 0.5,
#legendLabels=c('No changes',"-0.5< Log2FC <0.5","-0.5< Log2FC <0.5", 'p.adj<0.05 & -0.5< Log2FC <0.5"'),
legendPosition = 'right',
legendLabSize = -1,
legendIconSize = -1
)
ggsave(file=paste("Figures_Patients_GSE157256/VolcanoPlot_GSEA", OutputPlotName,Title, "SelectedLabels.pdf", sep="_"), plot=VolcanoPlot, width=10, height=8)
#ggsave(file=paste("VolcanoPlot_GSEA", OutputPlotName,Title, "SelectedLabels.png", sep="_"), plot=VolcanoPlot, width=10, height=8)
plot(VolcanoPlot)
}
VolcanoPlot_GSEA_Patients <- function(GSEA_Results, OutputfileName){
Volcano1 <- separate(GSEA_Results,"pathway", into = c("signature", "rest"), sep= "_", remove=FALSE)%>%
mutate(colour = case_when(signature =="KEGG" ~ 'blue',
signature =="BIOCARTA" ~ 'gold4',
signature =="HALLMARK" ~ 'deeppink4',
signature =="REACTOME" ~ 'seagreen4',
signature =="NFE2L2.V2" ~ 'pink',
signature =="EMTdown" ~ 'red',
signature =="EMTup" ~ 'red',
TRUE ~ 'Not_Detected'))
keyvals <- ifelse(
Volcano1$colour == "blue", "blue",
ifelse(Volcano1$colour == "gold4", "gold4",
ifelse(Volcano1$colour == "deeppink4", "deeppink4",
ifelse(Volcano1$colour == "seagreen4", "seagreen4",
ifelse(Volcano1$colour == "pink", "pink",
ifelse(Volcano1$colour == "red", "red",
"black"))))))
keyvals[is.na(keyvals)] <- 'black'
names(keyvals)[keyvals == 'blue'] <- "KEGG"
names(keyvals)[keyvals == 'gold4'] <- "BIOCARTA"
names(keyvals)[keyvals == 'deeppink4'] <- "HALLMARK"
names(keyvals)[keyvals == 'seagreen4'] <- "REACTOME"
names(keyvals)[keyvals == 'pink'] <- "NRF2"
names(keyvals)[keyvals == 'red'] <- "EMT"
names(keyvals)[keyvals == 'black'] <- 'X'
VolcanoPlot <- EnhancedVolcano (Volcano1,
lab = Volcano1$pathway,#Metabolite name
selectLab = c("HALLMARK_E2F_TARGETS", "HALLMARK_G2M_CHECKPOINT", "REACTOME_DNA_REPLICATION", "REACTOME_CELL_CYCLE_CHECKPOINTS", "HALLMARK_MYC_TARGETS_V1"),
x = "NES",#Log2FC
y = "padj",#p-value or q-value
xlab = "NES",
ylab = bquote(~-Log[10]~p.adj),#(~-Log[10]~adjusted~italic(P))
pCutoff = 0.25,
FCcutoff = 0.5,#Cut off Log2FC, automatically 2
pointSize = 3,
labSize = 1,
labFace = 'bold',
boxedLabels = FALSE,
colCustom = keyvals,
titleLabSize = 16,
col=c("black", "grey", "grey", "purple"),#if you want to change colors
colAlpha = 0.5,
title=paste(OutputfileName),
subtitle = bquote(italic("GSEA")),
caption = paste0("total = ", (nrow(Volcano1)), " Pathways"),
#xlim = c(-3.5,2.5),
#ylim = c(0,1.5),
ylim = c(0,((-log10(Reduce(min,GSEA_Results$padj))))+0.05),
drawConnectors = TRUE,
widthConnectors = 0.5,
colConnectors = "black",
cutoffLineType = "dashed",
cutoffLineCol = "black",
cutoffLineWidth = 0.5,
legendLabels=c('No changes',"-0.5< NES <0.5", 'p.adj<0.25 & -0.5< NES <0.5"'),
legendPosition = 'right',
legendLabSize = 12,
legendIconSize = 5.0
)
ggsave(file=paste("Figures_Patients_GSE157256/VolcanoPlot_GSEA_KEGG-Hallmark-Reactome-Biocarta-EMT-NRF2", OutputfileName, "SelectedLabels.pdf", sep="_"), plot=VolcanoPlot, width=10, height=8)
#ggsave(file=paste("Figures_Patients_GSE157256/VolcanoPlot_GSEA_KEGG-Hallmark-Reactome-Biocarta-EMT-NRF2", OutputfileName, "SelectedLabels.png", sep="_"), plot=VolcanoPlot, width=10, height=8)
plot(VolcanoPlot)
}
```
\
Make an overview plot of the GSEA results:
```{r, message=FALSE, warning=FALSE}
VolcanoPlot_GSEA_Patients(GSEA_Results= GSEA_Patients,
OutputfileName="Patients_TvN")
```
\
- Signatures to show: HALLMARK_E2F_TARGETS; HALLMARK_G2M_CHECKPOINT; REACTOME_DNA_REPLICATION; REACTOME_CELL_CYCLE_CHECKPOINTS; HALLMARK_MYC_TARGETS_V1.\
- From those signatures, highlight the following genes: Cdc20, Cdc45, Myc, Kpna2, Cdkn2a, Cdkn1a.
```{r, message=FALSE, warning=FALSE}
#-----------------------------------------------------------------------
#HALLMARK_E2F_TARGETS
Signature <- subset(Hallmarks_Human, term == "HALLMARK_E2F_TARGETS")
Signature_Merge_RNA <- merge(x=Signature,y=Patients, by.x="gene", by.y="Gene", all.x=TRUE)%>%
na.omit()%>%
rename("gene"="symbol")
VolcanoPlot_RNAseq_Patients(Signature_Merge_RNA=Signature_Merge_RNA,
Signature=Signature,
OutputPlotName="HALLMARK_E2F_TARGETS",
NES="3.43",
p.adj="0.02",
Title="HLRCC Patients (Tumour vs. Normal")
#-----------------------------------------------------------------------
#HALLMARK_MYC_TARGETS_V1
Signature <- subset(Hallmarks_Human, term == "HALLMARK_MYC_TARGETS_V1")
Signature_Merge_RNA <- merge(x=Signature,y=Patients, by.x="gene", by.y="Gene", all.x=TRUE)%>%
na.omit()%>%
rename("gene"="symbol")
VolcanoPlot_RNAseq_Patients(Signature_Merge_RNA=Signature_Merge_RNA,
Signature=Signature,
OutputPlotName="HALLMARK_MYC_TARGETS_V1",
NES="2.76",
p.adj="0.02",
Title="HLRCC Patients (Tumour vs. Normal")
```
# Information about packge used and versions
```{r}
sessionInfo()
```