-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhacktag_sideview_modeltrain.py
161 lines (130 loc) · 5.11 KB
/
hacktag_sideview_modeltrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
"""hack_tag sideview
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1oqSsNRSbRH2JQUpoCmkDKXh9NB8vVBYQ
"""
# Commented out IPython magic to ensure Python compatibility.
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import torchvision
import torch.optim as optim
from torchvision.datasets import ImageFolder
import torchvision.transforms as T
from torch.utils.data import random_split
from torch.utils.data import Dataset,DataLoader
from torchvision.utils import make_grid
import torch.nn.functional as F
from torchvision import models
from tqdm.notebook import tqdm
# %matplotlib inline
!pip install kaggle
!mkdir ~/.kaggle
!cp kaggle.json ~/.kaggle/
!chmod 600 ~/.kaggle/kaggle.json
! kaggle competitions download -c state-farm-distracted-driver-detection
from google.colab import drive
drive.mount('/content/gdrive')
!unzip /content/state-farm-distracted-driver-detection.zip
# Train path
train_path = "/content/imgs/train"
# Test path
test_path = "/content/imgs/test"
train_length = 0
for clas in os.listdir(train_path):
train_length += len(os.listdir(os.path.join(train_path, clas)))
# Data Transforms and Augmentation
train_transforms = T.Compose([ T.Resize((64, 64)),
T.RandomAdjustSharpness(2),
T.RandomRotation((-15, 15)),
T.ColorJitter(brightness=.5, hue=.3),
T.ToTensor(),
])
# Loading Data using ImageFolder
train_ds = ImageFolder(train_path, train_transforms)
classes = train_ds.classes
# Splitting into train-val set
val_pct = .1
val_size = int(val_pct * len(train_ds))
train_ds ,valid_ds = random_split(train_ds, [len(train_ds)-val_size, val_size])
# Data Loader
batch_size = 64
train_dl = DataLoader(train_ds, batch_size, shuffle = True, num_workers=2, pin_memory=True)
valid_dl = DataLoader(valid_ds, batch_size, num_workers=2, pin_memory=True)
class ResNet34(nn.Module):
def __init__(self,num_classes,pretrained=True):
super().__init__()
# Use a pretrained model
self.network = models.resnet34(pretrained=pretrained)
# Replace last layer
self.network.fc = nn.Linear(self.network.fc.in_features, num_classes)
def forward(self,x):
return self.network(x)
# Device configuration
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# Model configuration
pretrained_model = ResNet34(num_classes=10)
pretrained_model.to(device)
# Setting parameters
epochs = 8
lr = 1e-4
opt_func = torch.optim.Adam
def accuracy(outputs,labels):
_,preds = torch.max(outputs,dim=1)
return torch.tensor(torch.sum(preds == labels).item() / len(preds))
@torch.no_grad()
def evaluate(model, val_loader):
model.eval()
outputs = []
for batch in val_loader:
images,labels = batch
images = images.to(device)
print(images.shape)
labels = labels.to(device)
out = model(images)
loss = F.cross_entropy(out, labels)
acc = accuracy(out, labels)
outputs.append({"val_loss":loss.detach(), "val_acc":acc})
batch_losses = [x["val_loss"] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean() # Combine Losses
batch_accs = [x["val_acc"] for x in outputs]
epoch_acc = torch.stack(batch_accs).mean() # Combine Accuracies
return {"val_loss":epoch_loss.item(),"val_acc":epoch_acc.item()}
"""
Training step
"""
#Set up custom optimizer with weight decay
optimizer = opt_func(pretrained_model.parameters(), lr)
# Saving results for the evaluation of the model and comperison with other model.
history = []
for epoch in range(epochs):
# Training Phase
pretrained_model.train()
train_losses = []
lrs = []
for batch in tqdm(train_dl):
images, labels = batch
images = images.to(device)
labels = labels.to(device)
out = pretrained_model(images)
loss = F.cross_entropy(out, labels)
train_losses.append(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Validation Phase
result = evaluate(pretrained_model,valid_dl)
result["train_loss"] = torch.stack(train_losses).mean().item()
# result2["lrs"] = lrs # I won't add learning rate changes to the history
print("Epoch [{}/{}], train_loss : {:.4f}, val_loss : {:.4f}], val_acc : {:.4f}".format(epoch, epochs,
result["train_loss"],
result["val_loss"],
result["val_acc"]))
history.append(result)
torch.save(pretrained_model.state_dict(), "/content/gdrive/MyDrive/Kaam/Hacktag_side_resnet34.pth")
torch.save(model, '/content/gdrive/MyDrive/Kaam/model.pth')
result = evaluate(pretrained_model,valid_dl)