-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodel.py
138 lines (105 loc) · 3.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import torch.nn as nn
import torchvision.models as models
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, int(channel / reduction), bias=False),
nn.ReLU(inplace=True),
nn.Linear(int(channel / reduction), channel, bias=False),
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, _, _ = x.size()
p = self.avg_pool(x).view(b, c)
y = self.fc(p).view(b, c, 1, 1)
y = self.sigmoid(y)
return x * y.expand_as(x)
class ResidualBlock(nn.Module):
def __init__(self, in_c, out_c):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_c, out_c, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(out_c)
self.conv2 = nn.Conv2d(out_c, out_c, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(out_c)
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1, padding=0)
self.bn3 = nn.BatchNorm2d(out_c)
self.se = SELayer(out_c)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x1 = self.conv1(x)
x1 = self.bn1(x1)
x1 = self.relu(x1)
x2 = self.conv2(x1)
x2 = self.bn2(x2)
x3 = self.conv3(x)
x3 = self.bn3(x3)
x3 = self.se(x3)
x4 = x2 + x3
x4 = self.relu(x4)
return x4
class StridedConvBlock(nn.Module):
def __init__(self, in_c, out_c):
super(StridedConvBlock, self).__init__()
self.conv = nn.Conv2d(in_c, out_c, kernel_size=(3, 3), stride=2, padding=1)
self.bn = nn.BatchNorm2d(out_c)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class EncoderBlock(nn.Module):
def __init__(self, in_c, out_c):
super(EncoderBlock, self).__init__()
self.residual_block1 = ResidualBlock(in_c, out_c)
self.strided_conv = StridedConvBlock(out_c, out_c)
self.residual_block2 = ResidualBlock(out_c, out_c)
self.pooling = nn.MaxPool2d((2, 2))
def forward(self, x):
x1 = self.residual_block1(x)
x2 = self.strided_conv(x1)
x3 = self.residual_block2(x2)
p = self.pooling(x3)
return x1, x3, p
class CompNet(nn.Module):
def __init__(self):
super(CompNet, self).__init__()
""" Encoder """
self.e1 = EncoderBlock(3, 64)
self.e2 = EncoderBlock(64, 256)
""" Decoder 1 """
self.t1 = nn.ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=4, padding=0)
self.r1 = ResidualBlock(192, 128)
self.t2 = nn.ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=2, padding=1)
self.r2 = ResidualBlock(256, 128)
""" Decoder 2 """
self.t3 = nn.ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=2, padding=1)
self.r3 = ResidualBlock(128, 64)
self.t4 = nn.ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=2, padding=1)
self.r4 = ResidualBlock(96, 32)
""" Output """
self.output = nn.Conv2d(32, 1, kernel_size=(1, 1), padding=0)
def forward(self, x):
s11, s12, p1 = self.e1(x) ## 512, 256, 128
s21, s22, p2 = self.e2(p1) ## 128, 64, 32
t1 = self.t1(s22)
t1 = torch.cat([t1, s12], axis=1)
r1 = self.r1(t1)
t2 = self.t2(s21)
t2 = torch.cat([r1, t2], axis=1)
r2 = self.r2(t2)
t3 = self.t3(r2)
t3 = torch.cat([t3, s11], axis=1)
r3 = self.r3(t3)
t4 = self.t4(s12)
t4 = torch.cat([r3, t4], axis=1)
r4 = self.r4(t4)
output = self.output(r4)
return output
if __name__ == "__main__":
model = CompNet().cuda()
from torchsummary import summary
summary(model, (3, 512, 512))