-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
57 lines (49 loc) · 1.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import time
import random
import numpy as np
import cv2
from tqdm import tqdm
import torch
from sklearn.utils import shuffle
def seeding(seed):
""" Seeding the randomness. """
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def create_dir(path):
""" Create a directory. """
try:
if not os.path.exists(path):
os.makedirs(path)
except OSError:
print(f"Error: creating directory with name {path}")
def shuffling(x, y):
""" Shuffle the dataset. """
x, y = shuffle(x, y, random_state=42)
return x, y
def make_channel_last(x):
if len(x.shape) == 4:
x = np.transpose(x, (0, 2, 3, 1))
elif len(x.shape) == 3:
x = np.transpose(x, (1, 2, 0))
return x
def make_channel_first(x):
if len(x.shape) == 4:
x = np.transpose(x, (0, 3, 1, 2))
elif len(x.shape) == 3:
x = np.transpose(x, (1, 2, 0))
return x
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def print_and_save(file_path, data_str):
print(data_str)
with open(file_path, "a") as file:
file.write(data_str)
file.write("\n")