-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
127 lines (105 loc) · 5.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import sys
import logging
import time
import argparse
import numpy as np
from collections import OrderedDict
import cv2
import options.options as option
import utils.util as util
from data.util import bgr2ycbcr
from data import create_dataset, create_dataloader
from models import create_model
import lpips_models
if __name__ == '__main__':
# options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.')
opt = option.parse(parser.parse_args().opt, is_train=False)
print(opt['path'])
for key, path in opt['path'].items():
if key != 'pretrain_model_G' and path != None:
print(path)
util.mkdirs((path for key, path in opt['path'].items() if not key == 'pretrain_model_G' and path != None))
opt = option.dict_to_nonedict(opt)
util.setup_logger(None, opt['path']['log'], 'test.log', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
test_set = create_dataset(dataset_opt)
test_loader = create_dataloader(test_set, dataset_opt)
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
test_loaders.append(test_loader)
lpips_mode = lpips_models.PerceptualLoss()
# Create model
model = create_model(opt)
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt['name']
logger.info('\nTesting [{:s}]...'.format(test_set_name))
test_start_time = time.time()
dataset_dir = os.path.join(opt['path']['results_root'], test_set_name)
util.mkdir(dataset_dir)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['lpips'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
for data in test_loader:
need_HR = False if test_loader.dataset.opt['dataroot_HR'] is None else True
model.feed_data(data, need_HR=need_HR)
img_path = data['LR_path'][0]
img_name = os.path.splitext(os.path.basename(img_path))[0]
model.test() # test
visuals = model.get_current_visuals(need_HR=need_HR)
sr_img = util.tensor2img(visuals['SR']) # uint8
# save images
suffix = opt['suffix']
if suffix:
save_img_path = os.path.join(dataset_dir, img_name + suffix + '.png')
else:
save_img_path = os.path.join(dataset_dir, img_name + '.png')
util.save_img(sr_img, save_img_path)
# calculate PSNR and SSIM and LPIPS
if need_HR:
gt_img = util.tensor2img(visuals['HR'])
gt_img = gt_img / 255.
sr_img = sr_img / 255.
crop_border = test_loader.dataset.opt['scale']
cropped_sr_img = sr_img[crop_border:-crop_border, crop_border:-crop_border, :]
cropped_gt_img = gt_img[crop_border:-crop_border, crop_border:-crop_border, :]
psnr = util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
ssim = util.calculate_ssim(cropped_sr_img * 255, cropped_gt_img * 255)
lpips = lpips_mode.forward(visuals['HR']*2-1,visuals['SR']*2-1)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
test_results['lpips'].append(lpips)
if gt_img.shape[2] == 3: # RGB image
sr_img_y = bgr2ycbcr(sr_img, only_y=True)
gt_img_y = bgr2ycbcr(gt_img, only_y=True)
cropped_sr_img_y = sr_img_y[crop_border:-crop_border, crop_border:-crop_border]
cropped_gt_img_y = gt_img_y[crop_border:-crop_border, crop_border:-crop_border]
psnr_y = util.calculate_psnr(cropped_sr_img_y * 255, cropped_gt_img_y * 255)
ssim_y = util.calculate_ssim(cropped_sr_img_y * 255, cropped_gt_img_y * 255)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; LPIPS: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.'.format(img_name, psnr, ssim, lpips.item(), psnr_y, ssim_y))
else:
logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; LPIPS: {:.6f}.'.format(img_name, psnr, ssim, lpips))
else:
logger.info(img_name)
if need_HR: # metrics
# Average PSNR/SSIM results
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
ave_lpips = sum(test_results['lpips']) / len(test_results['lpips'])
logger.info('----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}; LPIPS: {:.6f}\n'\
.format(test_set_name, ave_psnr, ave_ssim, ave_lpips))
if test_results['psnr_y'] and test_results['ssim_y']:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
logger.info('----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n'\
.format(ave_psnr_y, ave_ssim_y))