This repository has been archived by the owner on Dec 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmidproject code.Rmd
118 lines (95 loc) · 3.24 KB
/
midproject code.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
title: "mid project"
output:
pdf_document: default
html_document: default
date: "2024-11-22"
---
```{r}
require(tidyverse)
require(deSolve)
```
```{r}
Big_data <- read_csv("/Users/andrewbatmunkh/Desktop/eeb313/Big.csv")
head(Big_data)
```
**Test if the log(mass) is normally distributed
```{r}
Big_data<- Big_data %>%
mutate(log_mass = log(mass))
hist(Big_data$log_mass, breaks = 30, main = "Histogram of log(mass)", xlab = "log(mass)")
hist(Big_data$log_mass, breaks = 30, probability = TRUE, main = "Histogram with Normal Curve", xlab = "log(mass)")
curve(dnorm(x, mean = mean(Big_data$log_mass), sd = sd(Big_data$log_mass)), add = TRUE, col = "red")
```
**Violin Plot of Log(Mass) by Disease Group and Sex**
```{r}
data_sex <- Big_data %>%
mutate(disease_group = ifelse(disease_time_step == "pre-invasion",
"Pre-Invasion",
"Post-Invasion")) %>%
mutate(log_mass = log(mass))
ggplot(data_sex, aes(x = disease_group, y = log_mass, fill = disease_group)) +
geom_violin(trim = FALSE) +
geom_point(alpha = 0.01, position = "jitter") +
stat_summary(fun = mean, geom = "crossbar",
width = 0.3, color = "red", size = 0.3) +
facet_wrap(~sex) +
labs(
title = "Violin Plot of Log(Mass) by Disease Group and Sex",
x = "Disease Group",
y = "Log(Mass)"
)
```
```{r}
glm_model <- glm(log_mass ~ disease_group * sex, data = data_sex)
summary(glm_model)
```
**Violin Plot of Log(Mass) by Disease Group and Age**
```{r}
data_age <- Big_data %>%
mutate(disease_group = ifelse(disease_time_step == "pre-invasion",
"Pre-Invasion",
"Post-Invasion")) %>%
mutate(log_mass = log(mass))
ggplot(data_age, aes(x = disease_group, y = log_mass, fill = disease_group)) +
geom_violin(alpha = 1) +
geom_point(alpha = 0.01, position = "jitter") +
stat_summary(fun = mean, geom = "crossbar",
width = 0.3, color = "red", size = 0.3) +
facet_wrap(~age) +
labs(
title = "Violin Plot of Log(Mass) by Disease Group and Age",
x = "Disease Group",
y = "Log(Mass)"
)
```
```{r}
glm_age <- glm(log_mass ~ disease_group * age, data = data_age)
summary(glm_age)
```
**Violin Plot of Log(Mass) by Disease Group and Pregnancy Status**
```{r}
data_pregnant <- Big_data %>%
mutate(pregnancy_status = ifelse(repstat == "pregnant",
"Pregnant",
"Not Pregnant")) %>%
mutate(disease_group = ifelse(disease_time_step == "pre-invasion",
"Pre-Invasion",
"Post-Invasion")) %>%
mutate(log_mass = log(mass))
ggplot(data_pregnant, aes(x = disease_group, y = log_mass, fill = disease_group)) +
geom_violin(alpha = 0.02) +
geom_point(alpha = 0.01, position = "jitter") +
stat_summary(fun = mean, geom = "crossbar",
width = 0.3, color = "red", size = 0.3) +
facet_wrap(~pregnancy_status) +
labs(
title = "Violin Plot of Log(Mass) by Disease Group and Pregnancy Status",
x = "Disease Group",
y = "Log(Mass)"
)
```
```{r}
glm_pregnancy <- glm(log_mass ~ disease_group * pregnancy_status, data = data_pregnant)
summary(glm_pregnancy)
```