-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIouMetric.py
60 lines (53 loc) · 2.59 KB
/
IouMetric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import torch
class IOUMetric:
"""
Class to calculate mean-iou using fast_hist method
"""
def __init__(self, num_classes):
self.num_classes = num_classes
self.hist = np.zeros((num_classes, num_classes))
def _fast_hist(self, label_pred, label_true):
# mask = (label_true >= 0) & (label_true < self.num_classes)
mask = (label_true >= 0) & (label_true < self.num_classes) & (label_pred < self.num_classes)
hist = np.bincount(
self.num_classes * label_true[mask].astype(int) +
label_pred[mask], minlength=self.num_classes ** 2).reshape(self.num_classes, self.num_classes)
return hist
def add_batch(self, predictions, gts):
for lp, lt in zip(predictions, gts):
self.hist += self._fast_hist(lp.flatten(), lt.flatten())
def evaluate(self):
acc = np.diag(self.hist).sum() / self.hist.sum()
recall = np.diag(self.hist) / self.hist.sum(axis=1)
# recall = np.nanmean(recall)
precision = np.diag(self.hist) / self.hist.sum(axis=0)
# precision = np.nanmean(precision)
TP = np.diag(self.hist)
TN = self.hist.sum(axis=1) - np.diag(self.hist)
FP = self.hist.sum(axis=0) - np.diag(self.hist)
iu = np.diag(self.hist) / (self.hist.sum(axis=1) + self.hist.sum(axis=0) - np.diag(self.hist))
mean_iu = np.nanmean(iu)
freq = self.hist.sum(axis=1) / self.hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
cls_iu = dict(zip(range(self.num_classes), iu))
return acc, recall, precision, TP, TN, FP, cls_iu, mean_iu, fwavacc
def miou(label_pred, label_true, num_classes):
mask = (label_true >= 0) & (label_true < num_classes) & (label_pred < num_classes)
hist = torch.bincount(
num_classes * label_true[mask].astype(int) +
label_pred[mask], minlength=num_classes ** 2).reshape(num_classes, num_classes)
acc = torch.diag(hist).sum() / hist.sum()
recall = torch.diag(hist) / hist.sum(axis=1)
recall = torch.nanmean(recall)
precision = torch.diag(hist) / hist.sum(axis=0)
precision = torch.nanmean(precision)
# TP = np.diag(hist)
# TN = hist.sum(axis=1) - np.diag(hist)
# FP = hist.sum(axis=0) - np.diag(hist)
iu = torch.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - torch.diag(hist))
mean_iu = torch.nanmean(iu)
freq = torch.sum(axis=1) / torch.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
# cls_iu = dict(zip(range(num_classes), iu))
return acc.item(), recall.item(), precision.item(), mean_iu.item(), fwavacc.item()