-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation-shapenet.py
516 lines (448 loc) · 20 KB
/
evaluation-shapenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
'''
Copyright 2024 Qiaojun Feng, Sai Jadhav, Tianyu Zhao, Zhirui Dai, K. M. Brian Lee, Nikolay Atanasov, UC San Diego.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import argparse
import os
import random
from dataclasses import dataclass
import MinkowskiEngine as ME
import numpy as np
import open3d as o3d
import pandas as pd
import torch
import transforms3d as t3d
import vedo
from joblib import Parallel
from joblib import delayed
from scipy.spatial import KDTree
from tqdm import tqdm
from model import load_model
from utils.eval_pose import eval_pose
from utils.symmetry import sym_pose
@dataclass
class Config:
shapenet_root: str
category: str
n_models: int
n_poses_per_model: int
max_roll_deg: float
max_pitch_deg: float
max_yaw_deg: float
max_translation_x: float
max_translation_y: float
max_translation_z: float
model_ckpt: str
device: str
random_seed: int
category_id: str = None
voxel_size: float = 0.03
k_nn: int = 5
max_corr: float = 0.4
def __post_init__(self):
if self.category == "table":
self.category_id = "04379243"
elif self.category == "chair":
self.category_id = "03001627"
else:
raise ValueError(f"Unsupported category: {self.category}")
assert self.n_poses_per_model > 0, "n_poses_per_model must be positive"
def load_pc(path):
pc = np.load(path)
t = pc.mean(axis=0, keepdims=True)
pc -= t
r = np.linalg.norm(pc, axis=1).max()
pc /= r
return pc
def generate_random_pose(config: Config):
roll = np.random.uniform(-config.max_roll_deg, config.max_roll_deg)
pitch = np.random.uniform(-config.max_pitch_deg, config.max_pitch_deg)
yaw = np.random.uniform(-config.max_yaw_deg, config.max_yaw_deg)
roll = np.deg2rad(roll)
pitch = np.deg2rad(pitch)
yaw = np.deg2rad(yaw)
translation_x = np.random.uniform(-config.max_translation_x, config.max_translation_x)
translation_y = np.random.uniform(-config.max_translation_y, config.max_translation_y)
translation_z = np.random.uniform(-config.max_translation_z, config.max_translation_z)
pose = np.eye(4)
pose[:3, :3] = t3d.euler.euler2mat(roll, pitch, yaw)
pose[0, 3] = translation_x
pose[1, 3] = translation_y
pose[2, 3] = translation_z
return pose
def quantize_pc(pc, voxel_size):
unique_idx = ME.utils.sparse_quantize(
np.ascontiguousarray(np.floor(pc / voxel_size)),
return_index=True,
return_maps_only=True,
)
pc = pc[unique_idx, :]
pc_grid = np.ascontiguousarray(np.floor(pc / voxel_size))
pc = torch.from_numpy(pc).float()
pc_grid = torch.from_numpy(pc_grid).int()
return pc, pc_grid
def batch_coords_and_feats(coords, feats):
batch_coords, batch_feats = ME.utils.sparse_collate(coords, feats)
return batch_coords, batch_feats
def generate_test_pc_pair(config: Config, pc_file):
pc = load_pc(pc_file)
pose = generate_random_pose(config)
pc_transformed = pc @ pose[:3, :3].T + pose[:3, [3]].T
return pc, pc_transformed, pose
def chamfer_max(pc0, pc0_tree, pc1, pc1_tree):
max0 = 0
for i in range(len(pc0)):
dist, idx = pc1_tree.query(pc0[i], k=1)
if dist > max0:
max0 = dist
max1 = 0
for i in range(len(pc1)):
dist, idx = pc0_tree.query(pc1[i], k=1)
if dist > max1:
max1 = dist
return max(max0, max1)
def test_symmetry_label(sym_label: int, pc: np.ndarray, cd_threshold: float):
pc_tree = KDTree(pc)
for i in range(1, int(sym_label / 2) + 1):
# in ShapeNet, y-axis is upward
R = t3d.euler.euler2mat(0, i * (2 * np.pi) / sym_label, 0)
pc_rot = pc @ R.T
pc_rot_tree = KDTree(pc_rot)
error = chamfer_max(pc, pc_tree, pc_rot, pc_rot_tree)
if error > cd_threshold:
return False
return True
def get_symmetry_label(pc: np.ndarray, cd_threshold: float) -> int:
for sym_label in [12, 8, 6, 4, 3, 2, 1]: # 1 is non-symmetry
if test_symmetry_label(sym_label, pc, cd_threshold):
return sym_label
return 0
class App:
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--shapenet-root", type=str, required=True)
parser.add_argument("--category", type=str, required=True)
parser.add_argument("--n-models", type=int, default=1)
parser.add_argument("--n-poses-per-model", type=int, default=10)
parser.add_argument("--max-roll-deg", type=float, default=360)
parser.add_argument("--max-pitch-deg", type=float, default=360)
parser.add_argument("--max-yaw-deg", type=float, default=360)
parser.add_argument("--max-translation-x", type=float, default=1.0)
parser.add_argument("--max-translation-y", type=float, default=1.0)
parser.add_argument("--max-translation-z", type=float, default=1.0)
parser.add_argument("--model-ckpt", type=str, required=True)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--random-seed", type=int, default=0)
args = parser.parse_args()
self.config = Config(
shapenet_root=args.shapenet_root,
category=args.category,
n_models=args.n_models,
n_poses_per_model=args.n_poses_per_model,
max_roll_deg=args.max_roll_deg,
max_pitch_deg=args.max_pitch_deg,
max_yaw_deg=args.max_yaw_deg,
max_translation_x=args.max_translation_x,
max_translation_y=args.max_translation_y,
max_translation_z=args.max_translation_z,
model_ckpt=args.model_ckpt,
device=args.device,
random_seed=args.random_seed,
)
random.seed(self.config.random_seed)
np.random.seed(self.config.random_seed)
o3d.utility.random.seed(self.config.random_seed)
torch.manual_seed(self.config.random_seed)
torch.cuda.manual_seed_all(self.config.random_seed)
self.category_dir = os.path.join(self.config.shapenet_root, self.config.category_id, "test")
self.pc_files = os.listdir(self.category_dir)
self.pc_files = [os.path.join(self.category_dir, f) for f in self.pc_files]
if self.config.n_models <= 0:
self.config.n_models = len(self.pc_files)
else:
self.config.n_models = min(self.config.n_models, len(self.pc_files))
if self.config.n_models < len(self.pc_files):
self.pc_files = np.random.choice(self.pc_files, self.config.n_models, replace=False)
self.pc_files = sorted(self.pc_files)
postfix = (
f"shapenet-seed{self.config.random_seed}-{self.config.category}-"
f"{self.config.n_models}-{self.config.n_poses_per_model}"
)
self.csv_file = f"results-{postfix}.csv"
self.npz_file = f"poses-{postfix}.npz"
if os.path.exists(self.csv_file) and os.path.exists(self.npz_file):
with open(self.csv_file, "r") as f:
self.df = pd.read_csv(f)
with open(self.npz_file, "rb") as f:
data = np.load(f)
self.poses_gt = data["poses_gt"]
self.poses_pred_sym = data["poses_pred_sym"]
self.poses_pred_ransac = data["poses_pred_ransac"]
else:
self.generate_test_results()
# print the statistics based on collected results
rte_002_sym = (self.df["rte_sym"] <= 0.02).sum() / len(self.df)
rte_002_ransac = (self.df["rte_ransac"] <= 0.02).sum() / len(self.df)
rre_05_sym = (self.df["rre_sym"] <= np.deg2rad(5)).sum() / len(self.df)
rre_05_ransac = (self.df["rre_ransac"] <= np.deg2rad(5)).sum() / len(self.df)
rte_002_rre_05_sym = ( (self.df["rte_sym"] <= 0.02) & (self.df["rre_sym"] <= np.deg2rad(5)) ).sum() / len(self.df)
rte_002_rre_05_ransac = ( (self.df["rte_ransac"] <= 0.02) & (self.df["rre_ransac"] <= np.deg2rad(5)) ).sum() / len(self.df)
tqdm.write(f"RTE <= 0.02: sym: {rte_002_sym:.4f}, ransac: {rte_002_ransac:.4f}")
tqdm.write(f"RRE <= 5 deg: sym: {rre_05_sym:.4f}, ransac: {rre_05_ransac:.4f}")
tqdm.write(f"RTE <= 0.02 & RRE <= 5 deg: sym: {rte_002_rre_05_sym:.4f}, ransac: {rte_002_rre_05_ransac:.4f}")
# Visualize Results
self._init_gui()
self.visualize()
def registration_worker(self, feats_pc, feats_pc_transformed, coords_pc, pc_quant, pc_transformed_quant, pose_gt):
symmetry_label = get_symmetry_label(coords_pc, 0.1)
T_est_sym, chamfer_dist_sym, T_est_ransac, chamfer_dist_ransac, sym_success = sym_pose(
feats_pc,
pc_quant,
feats_pc_transformed,
pc_transformed_quant,
symmetry_label,
self.config.k_nn,
self.config.max_corr,
seed=self.config.random_seed,
)
rte_sym, rre_sym = eval_pose(T_est_sym, np.eye(4), pose_gt, axis_symmetry=symmetry_label)
rte_ransac, rre_ransac = eval_pose(T_est_ransac, np.eye(4), pose_gt, axis_symmetry=symmetry_label)
results = dict(
symmetry_label=symmetry_label,
T_est_sym=T_est_sym,
chamfer_dist_sym=chamfer_dist_sym,
T_est_ransac=T_est_ransac,
chamfer_dist_ransac=chamfer_dist_ransac,
sym_success=sym_success,
rte_sym=rte_sym,
rre_sym=rre_sym,
rte_ransac=rte_ransac,
rre_ransac=rre_ransac,
)
# tqdm.write(f"symmetry label: {symmetry_label}, success: {sym_success}")
# tqdm.write(f"sym: RTE={rte_sym:.4f}, RRE={rre_sym:.4f}, CD={chamfer_dist_sym:.4f}")
# tqdm.write(f"ransac: RTE={rte_ransac:.4f}, RRE={rre_ransac:.4f}, CD={chamfer_dist_ransac:.4f}")
return results
def registration_producer(self):
model = load_model("ResUNetBN2C")(
in_channels=1,
out_channels=16,
bn_momentum=0.05,
normalize_feature=True,
conv1_kernel_size=3,
D=3,
).to(self.config.device)
# embedding = fc.conv1_max_embedding(1024, 512, 256).to(self.config.device)
checkpoint = torch.load(self.config.model_ckpt, map_location=self.config.device)
model.load_state_dict(checkpoint["state_dict"])
# embedding.load_state_dict(checkpoint["embedding_state_dict"])
model.eval()
# embedding.eval()
for pc_file in tqdm(self.pc_files, ncols=160, desc="model", position=0):
for _ in tqdm(range(self.config.n_poses_per_model), ncols=160, desc="pose", position=1, leave=False):
coords_pc, coords_pc_transformed, pose_gt = generate_test_pc_pair(self.config, pc_file)
pc_quant, pc_grid = quantize_pc(coords_pc, self.config.voxel_size)
pc_transformed_quant, pc_transformed_grid = quantize_pc(coords_pc_transformed, self.config.voxel_size)
batch_pc, batch_feats = batch_coords_and_feats(
[pc_grid, pc_transformed_grid],
[torch.ones((pc_grid.shape[0], 1)), torch.ones((pc_transformed_grid.shape[0], 1))],
)
batch_input = ME.SparseTensor(batch_feats.to(self.config.device), batch_pc.to(self.config.device))
batch_local_feats, batch_global_feats = model(batch_input)
mask_pc = batch_local_feats.C[:, 0] == 0
feats_pc = batch_local_feats.F[mask_pc, :]
feats_pc_transformed = batch_local_feats.F[~mask_pc, :]
self.poses_gt.append(pose_gt)
yield (
feats_pc.detach().cpu().numpy(),
feats_pc_transformed.detach().cpu().numpy(),
coords_pc,
pc_quant.detach().cpu().numpy(),
pc_transformed_quant.detach().cpu().numpy(),
pose_gt,
)
def generate_test_results(self):
self.df = pd.DataFrame(
columns=[
"model",
"pose_idx",
"symmetry_label",
"sym_success",
"rte_sym",
"rre_sym",
"cd_sym",
"rte_ransac",
"rre_ransac",
"cd_ransac",
]
)
self.poses_gt = []
self.poses_pred_sym = []
self.poses_pred_ransac = []
results = Parallel(n_jobs=-1, verbose=100, pre_dispatch="1.5*n_jobs")(
delayed(self.registration_worker)(*x) for x in self.registration_producer()
)
for idx, result in enumerate(results):
symmetry_label = result["symmetry_label"]
T_est_sym = result["T_est_sym"]
chamfer_dist_sym = result["chamfer_dist_sym"]
T_est_ransac = result["T_est_ransac"]
chamfer_dist_ransac = result["chamfer_dist_ransac"]
sym_success = result["sym_success"]
rte_sym = result["rte_sym"]
rre_sym = result["rre_sym"]
rte_ransac = result["rte_ransac"]
rre_ransac = result["rre_ransac"]
self.poses_pred_sym.append(T_est_sym)
self.poses_pred_ransac.append(T_est_ransac)
pc_file_idx = idx // self.config.n_poses_per_model
pose_idx = idx % self.config.n_poses_per_model
pc_file = self.pc_files[pc_file_idx]
self.df.loc[len(self.df)] = [
os.path.basename(pc_file),
pose_idx,
symmetry_label,
sym_success,
rte_sym,
rre_sym,
chamfer_dist_sym,
rte_ransac,
rre_ransac,
chamfer_dist_ransac,
]
self.df.to_csv(self.csv_file, index=False)
with open(self.npz_file, "wb") as f:
np.savez(
f, poses_gt=self.poses_gt, poses_pred_sym=self.poses_pred_sym, poses_pred_ransac=self.poses_pred_ransac
)
def visualize(self):
self._update_gui()
self.plotter.at(0).show(interactive=True)
def _keyboard_callback(self, event):
if event.name != "KeyPressEvent":
return
if event.keypress == "Right":
self.display_pc_idx += 1
elif event.keypress == "Left":
self.display_pc_idx -= 1
elif event.keypress == "q":
self.plotter.close()
return
if self.display_pc_idx < 0:
self.display_pc_idx = 0
elif self.display_pc_idx >= len(self.df):
self.display_pc_idx = len(self.df) - 1
self._update_gui()
def _init_gui(self):
# layout:
# |0: The full window
# |-------------------------|------------------------------|
# | 1. The org point cloud and the transformed point cloud |
# | 2. Vanilla RANSAC | 3. Symmetry RANSAC |
# |-------------------------|------------------------------|
dx = 0.01
dy = 0.01
nx = 2
ny = 2
ux = (1 - (nx + 1) * dx) / nx
uy = (1 - (ny + 1) * dy) / ny
bottom_left_xs = np.linspace(dx, 1, nx, endpoint=False)
bottom_left_ys = np.linspace(dy, 1, ny, endpoint=False)[::-1]
top_right_xs = bottom_left_xs + ux
top_right_ys = bottom_left_ys + uy
shape = [
dict(bottomleft=(0, 0), topright=(1, 1), bg="k1"),
dict(
bottomleft=(bottom_left_xs[0], bottom_left_ys[0]), topright=(top_right_xs[1], top_right_ys[0]), bg="w"
),
dict(
bottomleft=(bottom_left_xs[0], bottom_left_ys[1]), topright=(top_right_xs[0], top_right_ys[1]), bg="w"
),
dict(
bottomleft=(bottom_left_xs[1], bottom_left_ys[1]), topright=(top_right_xs[1], top_right_ys[1]), bg="w"
),
]
self.plotter = vedo.Plotter(shape=shape, sharecam=False, size=(1800, 1000))
self.display_pc_idx = 0
self.plotter.add_callback("KeyPress", self._keyboard_callback)
self.vedo_pcd1 = None
self.vedo_pcd2 = None
self.vedo_pcd_ransac = None
self.vedo_pcd_sym = None
self.vedo_flagpole1 = None
self.vedo_flagpole2 = None
self.vedo_pcd_gt1 = None
self.vedo_pcd_gt2 = None
self.vedo_loss_text_ransac = None
self.vedo_loss_text_sym = None
print("Press Right/Left to change the query point cloud")
def _update_gui(self):
pcd_file = self.df["model"][self.display_pc_idx]
pose_idx = self.df["pose_idx"][self.display_pc_idx]
tqdm.write(f"Align {self.config.category} {self.display_pc_idx}: {pcd_file}, pose_idx: {pose_idx}")
pcd_file = os.path.join(self.category_dir, pcd_file)
pcd_points = load_pc(pcd_file)
pose_gt = self.poses_gt[self.display_pc_idx]
pcd_points_transformed = pcd_points @ pose_gt[:3, :3].T + pose_gt[:3, [3]].T
if self.vedo_pcd1 is None:
self.plotter.at(1).add(vedo.Text2D("Point Clouds"))
else:
self.plotter.at(1).remove(self.vedo_pcd1, self.vedo_flagpole1, self.vedo_pcd2, self.vedo_flagpole2)
self.vedo_pcd1 = vedo.Points(pcd_points).color("red")
self.vedo_pcd2 = vedo.Points(pcd_points_transformed).color("green")
self.vedo_flagpole1 = self.vedo_pcd1.flagpole(f"Original point cloud", s=0.05)
self.vedo_flagpole2 = self.vedo_pcd2.flagpole(f"Transformed point cloud (GT)", s=0.05)
self.plotter.at(1).add(
self.vedo_pcd1,
self.vedo_flagpole1,
self.vedo_pcd2,
self.vedo_flagpole2,
).render(resetcam=True)
# visualize registration by vanilla ransac
if self.vedo_pcd_gt1 is None:
self.plotter.at(2).add(vedo.Text2D("Registration (Vanilla RANSAC)"))
else:
self.plotter.at(2).remove(self.vedo_pcd_ransac, self.vedo_pcd_gt1, self.vedo_loss_text_ransac)
pose_pred_ransac = self.poses_pred_ransac[self.display_pc_idx]
self.vedo_pcd_ransac = vedo.Points(pcd_points).apply_transform(pose_pred_ransac).color("red")
self.vedo_pcd_gt1 = vedo.Points(pcd_points_transformed).color("green")
rte_ransac = self.df["rte_ransac"][self.display_pc_idx]
rre_ransac = self.df["rre_ransac"][self.display_pc_idx]
self.vedo_loss_text_ransac = vedo.Text2D(
f"translation error: {rte_ransac:.3f}\n" f"rotation error: {rre_ransac:.3f}",
pos="bottom-right",
)
self.plotter.at(2).add(
self.vedo_pcd_ransac,
self.vedo_pcd_gt1,
self.vedo_loss_text_ransac,
).render(resetcam=True)
# visualize registration by symmetry ransac
if self.vedo_pcd_sym is None:
self.plotter.at(3).add(vedo.Text2D("Registration (Symmetry RANSAC)"))
else:
self.plotter.at(3).remove(self.vedo_pcd_sym, self.vedo_pcd_gt2, self.vedo_loss_text_sym)
pose_pred_sym = self.poses_pred_sym[self.display_pc_idx]
self.vedo_pcd_sym = vedo.Points(pcd_points).apply_transform(pose_pred_sym).color("red")
self.vedo_pcd_gt2 = vedo.Points(pcd_points_transformed).color("green")
rte_sym = self.df["rte_sym"][self.display_pc_idx]
rre_sym = self.df["rre_sym"][self.display_pc_idx]
self.vedo_loss_text_sym = vedo.Text2D(
f"translation error: {rte_sym:.3f}\n" f"rotation error: {rre_sym:.3f}",
pos="bottom-right",
)
self.plotter.at(3).add(
self.vedo_pcd_sym,
self.vedo_pcd_gt2,
self.vedo_loss_text_sym,
).render(resetcam=True)
if __name__ == "__main__":
App()