-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze-messages.py
executable file
·629 lines (486 loc) · 22.4 KB
/
analyze-messages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#! /usr/bin/env python3
import argparse
from datetime import datetime
import json
import os
import plotly.graph_objects as go
###########################################################################
# Parameters
# Required
my_facebook_name = ''
# Optional
path = './inbox'
# Ignore convos with less than 100 messages-- can be configured
is_worth_including_threshold = 100
# Whether should include call duration in words-spoken
include_call_words = False
# How many words per second should be included if the above `include_call_words` is True
# Taken from https://virtualspeech.com/blog/average-speaking-rate-words-per-minute
call_speak_rate = 120 / 60
# Ignore calls shorter than 10 seconds
min_call_duration_length = 10
sort_mode = 'total'
filtered_list = []
###########################################################################
# Constants
GREEN = '\033[92m'
BLUE = '\033[94m'
RED = '\033[91m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
END = '\033[0m'
TOTAL_MESSAGES_SORT_MODE = 'total'
WORDS_SORT_MODE = 'num_words'
IMGUR_LINKS_SORT_MODE = 'imgur'
OLDEST_SORT_MODE = 'oldest'
SORT_CONFIGS = {
TOTAL_MESSAGES_SORT_MODE: {
'type': 'Total',
'sort_func': lambda conversation: conversation.summary.total_messages,
'reverse': True,
},
WORDS_SORT_MODE: {
'type': 'Num Words',
'sort_func': lambda conversation: conversation.summary.num_words,
'reverse': True,
},
OLDEST_SORT_MODE: {
'type': 'Oldest',
'sort_func': lambda conversation: conversation.summary.oldest_message_time,
'reverse': False,
},
IMGUR_LINKS_SORT_MODE: {
'type': 'Imgur',
'sort_func': lambda conversation: conversation.summary.imgur_links,
'reverse': True,
},
}
###########################################################################
class Conversation(object):
"""
High-level wrapper class that holds information about messages,
convenience functions, and objects that hold logic for different parts of the script
"""
def __init__(self, messages):
self.messages = [Message(self, **message) for message in messages]
self.summary = ConversationSummary(self.messages)
self.history = ConversationHistory(self.messages)
# Just a convenience attribute so we don't have to reference the summary's other person
self.other_person = self.summary.other_person
self.header_str = '{bold}{blue}{name}{end}'.format(bold=BOLD, blue=BLUE, name=self.other_person, end=END)
def __str__(self):
return str(self.summary)
def message_history_str(self):
return self.header_str + str(self.history)
def words_history_str(self):
return self.header_str + str(self.history.words_month_str())
def messages_history_bar_obj(self):
return self._create_bar_on_history_map(self.history.messages_month_map())
def words_history_bar_obj(self):
return self._create_bar_on_history_map(self.history.words_month_map())
def call_history_bar_obj(self):
return self._create_bar_on_history_map(self.history.calls_month_map())
def call_duration_history_bar_obj(self):
return self._create_bar_on_history_map(self.history.call_duration_month_map())
def _create_bar_on_history_map(self, history_map):
return go.Bar(name=self.other_person, x=self.history.message_dates, y=[history_map[month] for month in self.history.message_dates])
def messages_history_relative_line_obj(self):
return self._create_relative_line_on_history_map(self.history.messages_month_map())
def words_history_relative_line_obj(self):
return self._create_relative_line_on_history_map(self.history.words_month_map())
def _create_relative_line_on_history_map(self, history_map):
return go.Scatter(name=self.other_person, x=self.history.message_dates, y=[history_map[month] for month in self.history.message_dates],
mode='lines', stackgroup='one', groupnorm='percent')
def number_conversation_starts(self, hour_threshold=72, count_links=True):
"""
Get the number of times someone started a conversation after an elapsed period of time
param hour_threshold: threshold for number of hours before a conversation is considered a "new" conversation
param count_links: whether the
returns dict with name of person as key and number of times as value.
If count_links is True, will also have '<Name> Links' as keys and links that started a convo as values
return dict also has 'hour_threshold' as convenience
"""
convo_starts = {
my_facebook_name: 0,
self.other_person: 0,
'hour_threshold': hour_threshold
}
if count_links:
my_links = my_facebook_name + ' Links'
other_links = self.other_person + ' Links'
convo_starts[my_links] = 0
convo_starts[other_links] = 0
for i in range(1, len(self.messages)):
time_diff = (self.messages[i-1].time - self.messages[i].time).total_seconds() / 3600
if time_diff >= hour_threshold:
if self.messages[i].sent_by_me():
convo_starts[my_facebook_name] += 1
if count_links and self.messages[i].imgur_links_in_message() > 0:
convo_starts[my_links] += 1
else:
convo_starts[self.other_person] += 1
if count_links and self.messages[i].imgur_links_in_message() > 0:
convo_starts[other_links] += 1
return convo_starts
###########################################################################
class ConversationSummary(object):
"""
Holds summary data around a conversation
"""
def __init__(self, messages):
self.other_person = ''
for message in messages:
if not message.sent_by_me():
self.other_person = message.sender_name
break
self.total_messages = len(messages)
self.my_total_messages = 0
self.my_actual_messages = 0
self.other_messages = 0
self.imgur_links = 0
self.num_words = 0
self.num_calls = 0
for message in messages:
if message.sent_by_me():
self.my_total_messages += 1
num_links = message.imgur_links_in_message()
self.imgur_links += num_links
if num_links == 0:
self.my_actual_messages += 1
else:
self.other_messages += 1
self.num_words += message.words_in_message(include_call_words)
if message.is_call() and message.call_duration > min_call_duration_length:
self.num_calls += 1
self.newest_message_time = messages[0].time
self.oldest_message_time = messages[-1].time
# Should probably filter out some outliers
self.days_spoken = (self.newest_message_time - self.oldest_message_time).days
self.average_msg_per_day = self.total_messages / (float(self.days_spoken) if self.days_spoken else 1)
self.avg_calls_per_month = self.num_calls / (float(self.days_spoken / 30) if self.days_spoken else 1)
def __str__(self):
return """
{bold}{blue}{name}{end}
{green}{underline}Total Messages:{end} {bold}{total}{end}
{green}{underline}Total Words Written:{end} {bold}{words}{end}
{green}{underline}My Total Messages:{end} {bold}{mine}{end}
{green}{underline}Number of Calls:{end} {bold}{calls}{end}
{green}{underline}My Imgur Links:{end} {bold}{imgur}{end}
{green}{underline}My Actual Messages:{end} {bold}{mine_actual}{end}
{green}{underline}Other Messages:{end} {bold}{other}{end}
{green}{underline}Oldest Message:{end} {bold}{oldest}{end}
{green}{underline}Newest Message:{end} {bold}{newest}{end}
{green}{underline}Days Spoken:{end} {bold}{days}{end}
{green}{underline}Avg Messages Per Day:{end} {bold}{avg}{end}
{green}{underline}Avg Calls Per Month: {end} {bold}{avg_calls}{end}
""".format(bold=BOLD, green=GREEN, blue=BLUE, underline=UNDERLINE, end=END,
name=self.other_person,
total=self.total_messages, words=self.num_words, mine=self.my_total_messages, calls=self.num_calls, imgur=self.imgur_links, mine_actual=self.my_actual_messages, other=self.other_messages,
oldest=self.oldest_message_time, newest=self.newest_message_time, days=self.days_spoken, avg=self.average_msg_per_day, avg_calls=self.avg_calls_per_month).strip()
###########################################################################
class ConversationHistory(object):
"""
Class that holds history information around a conversation
"""
def __init__(self, messages):
# A dict that holds references to message object based on the month was sent in
# Key is string 'YYYY-MM'
self.monthly_messages = {}
# dict that holds specifically call-messages same as above messages
self.monthly_calls = {}
for message in messages:
year_month = message.year_month()
if self.monthly_messages.get(year_month):
self.monthly_messages[year_month].append(message)
else:
self.monthly_messages[year_month] = [message]
if message.is_call() and message.call_duration >= min_call_duration_length:
if self.monthly_calls.get(year_month):
self.monthly_calls[year_month].append(message)
else:
self.monthly_calls[year_month] = [message]
# Get all the year-month keys in a sorted order
self.message_dates = sorted(self.monthly_messages.keys(), key=lambda year_month: year_month)
def num_messages_for_month(self, yyyy_mm):
return len(self.monthly_messages.get(yyyy_mm, []))
def num_calls_for_month(self, yyyy_mm):
return len(self.monthly_calls.get(yyyy_mm, []))
def num_words_for_month(self, yyyy_mm):
messages = self.monthly_messages.get(yyyy_mm, [])
num_words = 0
for message in messages:
num_words += message.words_in_message(include_call_words)
return num_words
def call_duration_for_month(self, yyyy_mm):
messages = self.monthly_calls.get(yyyy_mm, [])
call_duration = 0
for message in messages:
call_duration += message.call_duration
return call_duration
def messages_month_map(self):
"""Maps monthly_messages into number of messages sent each month"""
return self._map(lambda month: self.num_messages_for_month(month))
def words_month_map(self):
"""Maps monthly_messages into number of words sent each month"""
return self._map(lambda month: self.num_words_for_month(month))
def calls_month_map(self):
"""Maps monthly_calls into number of calls sent each month"""
return self._map(lambda month: self.num_calls_for_month(month))
def call_duration_month_map(self):
"""Maps monthly_calls into duration of calls each month"""
return self._map(lambda month: self.call_duration_for_month(month))
def words_per_message_month_map(self):
"""Maps monthly_messages into number of words per message sent each month"""
return self._map(lambda month: self.num_words_for_month(month) / self.num_messages_for_month(month))
def _map(self, map_func):
"""Maps monthly-messages according to the map-function"""
mapped_msgs = {}
for month in self.message_dates:
mapped_msgs[month] = map_func(month)
return mapped_msgs
def words_month_str(self):
return self._stringify(self.words_month_map())
def _stringify(self, monthly_messages_map):
"""
Returns a printable string version of the monthly messages map passed in
Note that the monthly_messages_map can be a mapped version, or the base one
"""
ret_str = ''
for month in self.message_dates:
ret_str += """
{k} -- {v}""".format(k=month, v=str(monthly_messages_map[month]))
return ret_str
def __str__(self):
return self._stringify(self.messages_month_map())
###########################################################################
class Message(object):
"""
Class that holds data on a message as well as helper and logic functions
"""
def __init__(self, conversation, **kwargs):
# A self-reference to the overall conversation for convenience
self.conversation = conversation
# We want the message to die if it doesn't have these kwargs
self.time = datetime.fromtimestamp(kwargs['timestamp_ms']/1000)
self.sender = kwargs['sender_name']
# Somehow, a message can not have the content key
self.content = kwargs.get('content', '')
self.call_duration = kwargs.get('call_duration', -1)
for k in kwargs:
setattr(self, k, kwargs[k])
def sent_by_me(self):
return self.sender_name == my_facebook_name
def year_month(self):
return self.time.strftime('%Y-%m')
# Types of messages: Generic, Share, Call
# Generic messages can have links in them or can be gifs/photos/stickers
# Shares can have content assocaited with them
# Calls have a duration
def is_call(self):
return self.call_duration > -1
def words_in_message(self, include_call=False):
call_words = 0
if include_call and self.is_call:
call_words = call_speak_rate * self.call_duration
return call_words if self.is_call() else len(self.content.split())
def imgur_links_in_message(self):
return 1 if ('imgur' in getattr(self, 'share', {'link':''}).get('link', '')) or ('imgur.com' in self.content) else 0
def __str__(self):
msg = """
Conversation: {conv}
Sender: {sender}
Type: {type}
Time: {time}
""".format(conv=self.conversation.other_person, sender=self.sender, type=self.type, time=self.time).strip()
if self.is_call():
msg += 'Call Duration: {dur}'.format(dur=self.call_duration)
else:
msg += 'Content: {content}'.format(content=self.content)
return msg
###########################################################################
# Utils
def is_worth_including(message_list):
return len(message_list) >= is_worth_including_threshold
def print_header(header_str):
print('{bold}{red}======== {header} ========{end}'.format(bold=BOLD, red=RED, header=header_str, end=END))
def print_summary_data(conversations, up_to=15, sort_mode=TOTAL_MESSAGES_SORT_MODE):
_print_messages(conversations, up_to, sort_mode, lambda conversation: conversation)
def print_messaging_history(conversations, up_to=7, sort_mode=TOTAL_MESSAGES_SORT_MODE):
_print_messages(conversations, up_to, sort_mode, lambda conversation: conversation.message_history_str())
def print_messaging_history_words_per_month(conversations, up_to=7, sort_mode=TOTAL_MESSAGES_SORT_MODE):
_print_messages(conversations, up_to, sort_mode, lambda conversation: conversation.words_history_str())
def print_conversation_starts(conversations, up_to=7, sort_mode=TOTAL_MESSAGES_SORT_MODE, hour_threshold=72):
_print_messages(conversations, up_to, sort_mode, lambda conversation: conversation.number_conversation_starts(hour_threshold=hour_threshold))
def sort_conversations(conversations, sort_mode):
sort_obj = SORT_CONFIGS[sort_mode]
return sorted(conversations, key=sort_obj['sort_func'], reverse=sort_obj['reverse'])
def _print_messages(conversations, up_to, sort_mode, print_func):
print_header('Top ' + str(up_to) + ' Conversations Sorted By ' + SORT_CONFIGS[sort_mode]['type'])
sorted_conversations = sort_conversations(conversations, sort_mode)
for idx, conversation in enumerate(sorted_conversations[0:up_to]):
print(idx+1, print_func(conversation))
def display_conversations_as_bars(conversations, up_to=5, sort_mode=TOTAL_MESSAGES_SORT_MODE, use_words=False, bar_mode='group', calls_graphs=False):
conversations_sorted = sort_conversations(conversations, sort_mode)
history_total_msgs_figure = go.Figure(
data=[conv.messages_history_bar_obj() for conv in conversations_sorted[0:up_to]]
)
_style_bar_chart(history_total_msgs_figure, 'Total Messages Sent In Conversation Over Time', y_axis_title='Total Number of Messages Sent', bar_mode=bar_mode)
history_total_msgs_figure.show()
if calls_graphs:
history_calls_figure = go.Figure(
data=[conv.call_history_bar_obj() for conv in conversations_sorted[0:up_to]]
)
_style_bar_chart(history_calls_figure, 'Total Calls In Conversation Over Time', y_axis_title='Number of Calls', bar_mode=bar_mode)
history_calls_figure.show()
if use_words:
history_words_figure = go.Figure(
data=[conv.words_history_bar_obj() for conv in conversations_sorted[0:up_to]]
)
_style_bar_chart(history_words_figure, 'Total Words Written In Conversation Over Time', y_axis_title='Total Amount of Words Written', bar_mode=bar_mode)
history_words_figure.show()
if calls_graphs:
history_calls_duration_figure = go.Figure(
data=[conv.call_duration_history_bar_obj() for conv in conversations_sorted[0:up_to]]
)
_style_bar_chart(history_calls_duration_figure, 'Total Seconds Spent on Call in Conversation Over Time', y_axis_title='Seconds Spent On Call', bar_mode=bar_mode)
history_calls_duration_figure.show()
def _style_bar_chart(figure, name, y_axis_title, bar_mode='group'):
figure.update_layout(
barmode=bar_mode,
title=go.layout.Title(
text=name,
xref='paper',
x=0
),
xaxis=go.layout.XAxis(
nticks=50,
tickangle=-45
),
yaxis=go.layout.YAxis(
title=go.layout.yaxis.Title(text=y_axis_title)
)
)
def display_conversations_relative_percents(conversations, up_to=5, sort_mode=TOTAL_MESSAGES_SORT_MODE, use_words=False):
"""
Honestly, these graphs are kinda ugly. Thought they'd be cool, but with more than 3 people, they're just messy
"""
conversations_sorted = sort_conversations(conversations, sort_mode)
total_messages_figure = go.Figure()
for conv in conversations_sorted[0:up_to]:
total_messages_figure.add_trace(conv.messages_history_relative_line_obj())
_style_relative_percent_chart(total_messages_figure, 'Relative Percents of Total Messages Over Time')
total_messages_figure.show()
if use_words:
total_words_figure = go.Figure()
for conv in conversations_sorted[0:up_to]:
total_words_figure.add_trace(conv.words_history_relative_line_obj())
_style_relative_percent_chart(total_words_figure, 'Relative Percents of Words Sent Over Time')
total_words_figure.show()
def _style_relative_percent_chart(figure, name):
figure.update_layout(
showlegend=True,
title=go.layout.Title(
text=name,
xref='paper',
x=0
),
yaxis=dict(
type='linear',
range=[1, 100],
ticksuffix='%'
)
)
def get_conversations():
conversations = []
num_conversations = 0
num_conversations_with_two_people = 0
folders = os.listdir(path)
for name in folders:
files = os.listdir(path + '/' + name)
has_json_files = any('.json' in file_name for file_name in files)
if has_json_files:
num_conversations += 1
json_files = [file_name for file_name in files if '.json' in file_name]
json_files.sort()
# Large conversations get split up in multiple files, so we have to consolidate the conversation
# Note that current facebook implementation has `message_1.json` the newest files, and `message_3.json` the oldest, so we can just concat them together
all_messages = []
for idx, file_name in enumerate(json_files):
with open('{}/{}/{}'.format(path, name, file_name)) as f:
data = json.load(f)
participants = data['participants']
if len(participants) == 2:
if idx == 0:
num_conversations_with_two_people += 1
all_messages.extend(data['messages'])
if is_worth_including(all_messages):
conversations.append(Conversation(all_messages))
print_header('Number of Conversations Found')
print(num_conversations)
print_header('Number of Conversation Between Two People')
print(num_conversations_with_two_people)
print_header('Messages Worth Including')
print(len(conversations))
return conversations
###########################################################################
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='A program to analyze facebook messenger data.')
parser.add_argument('my_name', type=str,
help='The name you use for facebook. The name that shows up for you in the messages')
parser.add_argument('-p', '--path', type=str, default=path,
help='Relative or absolute path to the location of the conversation folders. Default "./inbox"')
parser.add_argument('-i', '--include-threshold', type=int, default=is_worth_including_threshold,
help='The smallest number of total messages in a conversation for a conversation to be counted. Default 100')
parser.add_argument('-s', '--sort-mode', type=str, default=sort_mode, choices=[TOTAL_MESSAGES_SORT_MODE, WORDS_SORT_MODE, OLDEST_SORT_MODE, IMGUR_LINKS_SORT_MODE],
help='How to sort the messages by. Default "total"')
parser.add_argument('-t', '--top-people', type=int, default=5,
help='The top number of people people to display. Default 5')
parser.add_argument('-f', '--filter', type=str, default='',
help='List of names, separated by comma (no whitespace between), for the program to filter to. If not provided, will do no filtering. If a given name does not exist, will still filter, but will do nothing for that name.')
# Summary-only
parser.add_argument('-so', '--summary-only', action='store_true',
help='Print only summary information in command-line. Do not display graphs')
# Pring History
parser.add_argument('-ph', '--print-history', action='store_true',
help='Print the messaging history per month')
# Include Words-Count
parser.add_argument('-w', '--word-count', action='store_true',
help='Display analysis with word-count in addition to total messages-- if paired with -c, will display call duration graphs')
parser.add_argument('-b', '--bar-mode', type=str, default='group', choices=['group', 'stack'],
help='How to display the bars in the history graph. Default "group"')
parser.add_argument('-rg', '--relative-graphs', action='store_true',
help='Display the relative-percent graphs as well')
parser.add_argument('-c', '--calls', action='store_true',
help='Generate analysis on call graphs')
parser.add_argument('-wc', '--words-calls', action='store_true',
help='Include call duration in word-count calculations')
args = parser.parse_args()
my_facebook_name = args.my_name
path = args.path
is_worth_including_threshold = args.include_threshold
sort_mode = args.sort_mode
num_to_display = args.top_people
filtered_list = args.filter.split(',') if len(args.filter) > 0 else []
summary_only = args.summary_only
use_words = args.word_count
bar_mode = args.bar_mode
print_history = args.print_history
display_relative = args.relative_graphs
calls_graphs = args.calls
# Note this is global var
include_call_words = args.words_calls
conversations = get_conversations()
if len(filtered_list) > 0:
print_header('Filtering Conversations Down To Top {} of {} Given Names'.format(num_to_display, len(filtered_list)))
conversations = [conv for conv in conversations if conv.other_person in filtered_list]
print_summary_data(conversations, up_to=num_to_display, sort_mode=sort_mode)
if not summary_only:
if print_history:
print_header('Messaging History in Total Messages Per Month')
print_messaging_history(conversations, up_to=num_to_display, sort_mode=sort_mode)
if use_words:
print_header('Messaging History in Total Words Per Month')
print_messaging_history_words_per_month(conversations, up_to=num_to_display, sort_mode=sort_mode)
display_conversations_as_bars(conversations, up_to=num_to_display, sort_mode=sort_mode, use_words=use_words, bar_mode=bar_mode, calls_graphs=calls_graphs)
if display_relative:
display_conversations_relative_percents(conversations, up_to=num_to_display, sort_mode=sort_mode, use_words=use_words)