forked from gasteigerjo/dimenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainscript.py
349 lines (236 loc) · 9.72 KB
/
trainscript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import tensorflow as tf
import numpy as np
import os
import ast
import logging
import string
import random
import yaml
from datetime import datetime
from dimenet.model.dimenet import DimeNet
from dimenet.model.dimenet_pp import DimeNetPP
from dimenet.model.activations import swish
from dimenet.training.trainer import Trainer
from dimenet.training.metrics import Metrics
from dimenet.training.data_container import DataContainer
from dimenet.training.data_provider import DataProvider
print("import complete")
# In[2]:
# Set up logger
logger = logging.getLogger()
logger.handlers = []
ch = logging.StreamHandler()
formatter = logging.Formatter(
fmt='%(asctime)s (%(levelname)s): %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.setLevel('INFO')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
tf.get_logger().setLevel('WARN')
tf.autograph.set_verbosity(2)
# ### Load config
# In[3]:
# config.yaml for DimeNet, config_pp.yaml for DimeNet++
with open('config_pp.yaml', 'r') as c:
config = yaml.safe_load(c)
# In[4]:
# For strings that yaml doesn't parse (e.g. None)
for key, val in config.items():
if type(val) is str:
try:
config[key] = ast.literal_eval(val)
except (ValueError, SyntaxError):
pass
# In[5]:
model_name = config['model_name']
if model_name == "dimenet":
num_bilinear = config['num_bilinear']
elif model_name == "dimenet++":
out_emb_size = config['out_emb_size']
int_emb_size = config['int_emb_size']
basis_emb_size = config['basis_emb_size']
extensive = config['extensive']
else:
raise ValueError(f"Unknown model name: '{model_name}'")
emb_size = config['emb_size']
num_blocks = config['num_blocks']
num_spherical = config['num_spherical']
num_radial = config['num_radial']
output_init = config['output_init']
cutoff = config['cutoff']
envelope_exponent = config['envelope_exponent']
num_before_skip = config['num_before_skip']
num_after_skip = config['num_after_skip']
num_dense_output = config['num_dense_output']
num_train = config['num_train']
num_valid = config['num_valid']
data_seed = config['data_seed']
dataset = config['dataset']
logdir = config['logdir']
num_steps = config['num_steps']
ema_decay = config['ema_decay']
learning_rate = config['learning_rate']
warmup_steps = config['warmup_steps']
decay_rate = config['decay_rate']
decay_steps = config['decay_steps']
batch_size = config['batch_size']
evaluation_interval = config['evaluation_interval']
save_interval = config['save_interval']
restart = config['restart']
comment = config['comment']
targets = config['targets']
print("config load complete")
# ### Create directories
# In[6]:
# Used for creating a random "unique" id for this run
def id_generator(size=8, chars=string.ascii_uppercase + string.ascii_lowercase + string.digits):
return ''.join(random.SystemRandom().choice(chars) for _ in range(size))
# Create directories
# A unique directory name is created for this run based on the input
if restart is None:
directory = (logdir + "/" + datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + id_generator()
+ "_" + os.path.basename(dataset)
+ "_" + '-'.join(targets)
+ "_" + comment)
else:
directory = restart
logging.info(f"Directory: {directory}")
if not os.path.exists(directory):
os.makedirs(directory)
best_dir = os.path.join(directory, 'best')
if not os.path.exists(best_dir):
os.makedirs(best_dir)
log_dir = os.path.join(directory, 'logs')
if not os.path.exists(log_dir):
os.makedirs(log_dir)
best_loss_file = os.path.join(best_dir, 'best_loss.npz')
best_ckpt_file = os.path.join(best_dir, 'ckpt')
step_ckpt_folder = log_dir
# ### Create summary writer and metrics
# In[7]:
summary_writer = tf.summary.create_file_writer(log_dir)
train = {}
validation = {}
train['metrics'] = Metrics('train', targets)
validation['metrics'] = Metrics('val', targets)
# ### Load dataset
# In[8]:
data_container = DataContainer(dataset, cutoff=cutoff, target_keys=targets)
# Initialize DataProvider (splits dataset into 3 sets based on data_seed and provides tf.datasets)
data_provider = DataProvider(data_container, num_train, num_valid, batch_size,
seed=data_seed, randomized=True)
# Initialize datasets
train['dataset'] = data_provider.get_dataset('train').prefetch(tf.data.experimental.AUTOTUNE)
train['dataset_iter'] = iter(train['dataset'])
validation['dataset'] = data_provider.get_dataset('val').prefetch(tf.data.experimental.AUTOTUNE)
validation['dataset_iter'] = iter(validation['dataset'])
# ### Initialize model
# In[9]:
if model_name == "dimenet":
model = DimeNet(
emb_size=emb_size, num_blocks=num_blocks, num_bilinear=num_bilinear,
num_spherical=num_spherical, num_radial=num_radial,
cutoff=cutoff, envelope_exponent=envelope_exponent,
num_before_skip=num_before_skip, num_after_skip=num_after_skip,
num_dense_output=num_dense_output, num_targets=len(targets),
activation=swish, output_init=output_init)
elif model_name == "dimenet++":
model = DimeNetPP(
emb_size=emb_size, out_emb_size=out_emb_size,
int_emb_size=int_emb_size, basis_emb_size=basis_emb_size,
num_blocks=num_blocks, num_spherical=num_spherical, num_radial=num_radial,
cutoff=cutoff, envelope_exponent=envelope_exponent,
num_before_skip=num_before_skip, num_after_skip=num_after_skip,
num_dense_output=num_dense_output, num_targets=len(targets),
activation=swish, extensive=extensive, output_init=output_init)
else:
raise ValueError(f"Unknown model name: '{model_name}'")
print("model load complete")
# ### Save/load best recorded loss
# In[10]:
if os.path.isfile(best_loss_file):
loss_file = np.load(best_loss_file)
metrics_best = {k: v.item() for k, v in loss_file.items()}
else:
metrics_best = validation['metrics'].result()
for key in metrics_best.keys():
metrics_best[key] = np.inf
metrics_best['step'] = 0
np.savez(best_loss_file, **metrics_best)
# ### Initialize trainer
# In[11]:
trainer = Trainer(model, learning_rate, warmup_steps,
decay_steps, decay_rate,
ema_decay=ema_decay, max_grad_norm=1000)
# ### Set up checkpointing and load latest checkpoint
# In[12]:
# Set up checkpointing
ckpt = tf.train.Checkpoint(step=tf.Variable(1), optimizer=trainer.optimizer, model=model)
manager = tf.train.CheckpointManager(ckpt, step_ckpt_folder, max_to_keep=3)
# Restore latest checkpoint
ckpt_restored = tf.train.latest_checkpoint(log_dir)
if ckpt_restored is not None:
ckpt.restore(ckpt_restored)
# ### Training loop
#
# Note that the warning `UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.` is expected. It is due to the backward pass of `tf.gather` ([this one](https://github.com/klicperajo/dimenet/blob/master/dimenet/model/layers/interaction_block.py#L62), to be exact) producing sparse gradients, which the previous layer has to convert to a dense tensor (see [this Stack Overflow question](https://stackoverflow.com/questions/35892412/tensorflow-dense-gradient-explanation)).
# In[13]:
print("starting training loop")
with summary_writer.as_default():
steps_per_epoch = int(np.ceil(num_train / batch_size))
if ckpt_restored is not None:
step_init = ckpt.step.numpy()
else:
step_init = 1
for step in range(step_init, num_steps + 1):
with tf.profiler.experimental.Profile('logdir'):
# Update step number
ckpt.step.assign(step)
tf.summary.experimental.set_step(step)
# Perform training step
print("performing train loop")
trainer.train_on_batch(train['dataset_iter'], train['metrics'])
print("ended train loop")
# Save progress
if (step % save_interval == 0):
manager.save()
# Evaluate model and log results
if (step % evaluation_interval == 0):
# Save backup variables and load averaged variables
trainer.save_variable_backups()
trainer.load_averaged_variables()
# Compute results on the validation set
for i in range(int(np.ceil(num_valid / batch_size))):
trainer.test_on_batch(validation['dataset_iter'], validation['metrics'])
# Update and save best result
if validation['metrics'].mean_mae < metrics_best['mean_mae_val']:
metrics_best['step'] = step
metrics_best.update(validation['metrics'].result())
np.savez(best_loss_file, **metrics_best)
model.save_weights(best_ckpt_file)
for key, val in metrics_best.items():
if key != 'step':
tf.summary.scalar(key + '_best', val)
epoch = step // steps_per_epoch
logging.info(
f"{step}/{num_steps} (epoch {epoch+1}): "
f"Loss: train={train['metrics'].loss:.6f}, val={validation['metrics'].loss:.6f}; "
f"logMAE: train={train['metrics'].mean_log_mae:.6f}, "
f"val={validation['metrics'].mean_log_mae:.6f}")
train['metrics'].write()
validation['metrics'].write()
train['metrics'].reset_states()
validation['metrics'].reset_states()
if epoch == 1:
print("Step : ")
print(step)
break
# Restore backup variables
trainer.restore_variable_backups()
# In[ ]:
# In[ ]:
# In[ ]: