-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
937 lines (772 loc) · 35.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
import re
import math
import random
import numpy as np
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import Sequential, BatchNorm1d, BatchNorm2d, Dropout, Module, Linear
from itertools import repeat
from torchvision import transforms
from torchvision.transforms.functional import rgb_to_grayscale
# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', [
'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate',
'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon',
'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top'])
# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
'num_repeat', 'kernel_size', 'stride', 'expand_ratio',
'input_filters', 'output_filters', 'se_ratio', 'id_skip'])
# Set GlobalParams and BlockArgs's defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
# An ordinary implementation of Swish function
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_tensors[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
def round_filters(filters, global_params):
"""Calculate and round number of filters based on width multiplier.
Use width_coefficient, depth_divisor and min_depth of global_params.
Args:
filters (int): Filters number to be calculated.
global_params (namedtuple): Global params of the model.
Returns:
new_filters: New filters number after calculating.
"""
multiplier = global_params.width_coefficient
if not multiplier:
return filters
# TODO: modify the params names.
# maybe the names (width_divisor,min_width)
# are more suitable than (depth_divisor,min_depth).
divisor = global_params.depth_divisor
min_depth = global_params.min_depth
filters *= multiplier
min_depth = min_depth or divisor # pay attention to this line when using min_depth
# follow the formula transferred from official TensorFlow implementation
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, global_params):
"""Calculate module's repeat number of a block based on depth multiplier.
Use depth_coefficient of global_params.
Args:
repeats (int): num_repeat to be calculated.
global_params (namedtuple): Global params of the model.
Returns:
new repeat: New repeat number after calculating.
"""
multiplier = global_params.depth_coefficient
if not multiplier:
return repeats
# follow the formula transferred from official TensorFlow implementation
return int(math.ceil(multiplier * repeats))
def drop_connect(inputs, p, training):
"""Drop connect.
Args:
input (tensor: BCWH): Input of this structure.
p (float: 0.0~1.0): Probability of drop connection.
training (bool): The running mode.
Returns:
output: Output after drop connection.
"""
assert 0 <= p <= 1, 'p must be in range of [0,1]'
if not training:
return inputs
batch_size = inputs.shape[0]
keep_prob = 1 - p
# generate binary_tensor mask according to probability (p for 0, 1-p for 1)
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
binary_tensor = torch.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def get_width_and_height_from_size(x):
"""Obtain height and width from x.
Args:
x (int, tuple or list): Data size.
Returns:
size: A tuple or list (H,W).
"""
if isinstance(x, int):
return x, x
if isinstance(x, list) or isinstance(x, tuple):
return x
else:
raise TypeError()
def calculate_output_image_size(input_image_size, stride):
"""Calculates the output image size when using Conv2dSamePadding with a stride.
Necessary for static padding. Thanks to mannatsingh for pointing this out.
Args:
input_image_size (int, tuple or list): Size of input image.
stride (int, tuple or list): Conv2d operation's stride.
Returns:
output_image_size: A list [H,W].
"""
if input_image_size is None:
return None
image_height, image_width = get_width_and_height_from_size(input_image_size)
stride = stride if isinstance(stride, int) else stride[0]
image_height = int(math.ceil(image_height / stride))
image_width = int(math.ceil(image_width / stride))
return [image_height, image_width]
def get_same_padding_conv2d(image_size=None):
"""Chooses static padding if you have specified an image size, and dynamic padding otherwise.
Static padding is necessary for ONNX exporting of models.
Args:
image_size (int or tuple): Size of the image.
Returns:
Conv2dDynamicSamePadding or Conv2dStaticSamePadding.
"""
if image_size is None:
return Conv2dDynamicSamePadding
else:
return partial(Conv2dStaticSamePadding, image_size=image_size)
class Conv2dDynamicSamePadding(nn.Conv2d):
"""2D Convolutions like TensorFlow, for a dynamic image size.
The padding is operated in forward function by calculating dynamically.
"""
# Tips for 'SAME' mode padding.
# Given the following:
# i: width or height
# s: stride
# k: kernel size
# d: dilation
# p: padding
# Output after Conv2d:
# o = floor((i+p-((k-1)*d+1))/s+1)
# If o equals i, i = floor((i+p-((k-1)*d+1))/s+1),
# => p = (i-1)*s+((k-1)*d+1)-i
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
def forward(self, x):
ih, iw = x.size()[-2:]
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) # change the output size according to stride ! ! !
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class Conv2dStaticSamePadding(nn.Conv2d):
"""2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size.
The padding mudule is calculated in construction function, then used in forward.
"""
# With the same calculation as Conv2dDynamicSamePadding
def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs):
super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
# Calculate padding based on image size and save it
assert image_size is not None
ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2,
pad_h // 2, pad_h - pad_h // 2))
else:
self.static_padding = nn.Identity()
def forward(self, x):
x = self.static_padding(x)
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
return x
class BlockDecoder(object):
"""Block Decoder for readability,
straight from the official TensorFlow repository.
"""
@staticmethod
def _decode_block_string(block_string):
"""Get a block through a string notation of arguments.
Args:
block_string (str): A string notation of arguments.
Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.
Returns:
BlockArgs: The namedtuple defined at the top of this file.
"""
assert isinstance(block_string, str)
ops = block_string.split('_')
options = {}
for op in ops:
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
# Check stride
assert (('s' in options and len(options['s']) == 1) or
(len(options['s']) == 2 and options['s'][0] == options['s'][1]))
return BlockArgs(
num_repeat=int(options['r']),
kernel_size=int(options['k']),
stride=[int(options['s'][0])],
expand_ratio=int(options['e']),
input_filters=int(options['i']),
output_filters=int(options['o']),
se_ratio=float(options['se']) if 'se' in options else None,
id_skip=('noskip' not in block_string))
@staticmethod
def _encode_block_string(block):
"""Encode a block to a string.
Args:
block (namedtuple): A BlockArgs type argument.
Returns:
block_string: A String form of BlockArgs.
"""
args = [
'r%d' % block.num_repeat,
'k%d' % block.kernel_size,
's%d%d' % (block.strides[0], block.strides[1]),
'e%s' % block.expand_ratio,
'i%d' % block.input_filters,
'o%d' % block.output_filters
]
if 0 < block.se_ratio <= 1:
args.append('se%s' % block.se_ratio)
if block.id_skip is False:
args.append('noskip')
return '_'.join(args)
@staticmethod
def decode(string_list):
"""Decode a list of string notations to specify blocks inside the network.
Args:
string_list (list[str]): A list of strings, each string is a notation of block.
Returns:
blocks_args: A list of BlockArgs namedtuples of block args.
"""
assert isinstance(string_list, list)
blocks_args = []
for block_string in string_list:
blocks_args.append(BlockDecoder._decode_block_string(block_string))
return blocks_args
@staticmethod
def encode(blocks_args):
"""Encode a list of BlockArgs to a list of strings.
Args:
blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args.
Returns:
block_strings: A list of strings, each string is a notation of block.
"""
block_strings = []
for block in blocks_args:
block_strings.append(BlockDecoder._encode_block_string(block))
return block_strings
def efficientnet_params(model_name):
"""Map EfficientNet model name to parameter coefficients.
Args:
model_name (str): Model name to be queried.
Returns:
params_dict[model_name]: A (width,depth,res,dropout) tuple.
"""
"""
params_dict = {
# Coefficients: width,depth,res,dropout
'efficientnet-b0': (1.0, 1.0, 224, 0.2),
'efficientnet-b1': (1.0, 1.1, 240, 0.2),
'efficientnet-b2': (1.1, 1.2, 260, 0.3),
'efficientnet-b3': (1.2, 1.4, 300, 0.3),
'efficientnet-b4': (1.4, 1.8, 380, 0.4),
'efficientnet-b5': (1.6, 2.2, 456, 0.4),
'efficientnet-b6': (1.8, 2.6, 528, 0.5),
'efficientnet-b7': (2.0, 3.1, 600, 0.5),
'efficientnet-b8': (2.2, 3.6, 672, 0.5),
'efficientnet-l2': (4.3, 5.3, 800, 0.5),
}
"""
params_dict = {
# Coefficients: width,depth,res,dropout
'efficientnet-b0': (1.0, 1.0, 112, 0.2),
'efficientnet-b1': (1.0, 1.1, 112, 0.2),
'efficientnet-b2': (1.1, 1.2, 112, 0.3),
'efficientnet-b3': (1.2, 1.4, 112, 0.3),
'efficientnet-b4': (1.4, 1.8, 112, 0.4),
'efficientnet-b5': (1.6, 2.2, 112, 0.4),
'efficientnet-b6': (1.8, 2.6, 112, 0.5),
'efficientnet-b7': (2.0, 3.1, 112, 0.5),
'efficientnet-b8': (2.2, 3.6, 112, 0.5),
'efficientnet-l2': (4.3, 5.3, 112, 0.5),
}
return params_dict[model_name]
def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None,
dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True):
"""Create BlockArgs and GlobalParams for efficientnet model.
Args:
width_coefficient (float)
depth_coefficient (float)
image_size (int)
dropout_rate (float)
drop_connect_rate (float)
num_classes (int)
Meaning as the name suggests.
Returns:
blocks_args, global_params.
"""
# Blocks args for the whole model(efficientnet-b0 by default)
# It will be modified in the construction of EfficientNet Class according to model
blocks_args = [
'r1_k3_s11_e1_i32_o16_se0.25',
'r2_k3_s22_e6_i16_o24_se0.25',
'r2_k5_s22_e6_i24_o40_se0.25',
'r3_k3_s22_e6_i40_o80_se0.25',
'r3_k5_s11_e6_i80_o112_se0.25',
'r4_k5_s22_e6_i112_o192_se0.25',
'r1_k3_s11_e6_i192_o320_se0.25',
]
blocks_args = BlockDecoder.decode(blocks_args)
global_params = GlobalParams(
width_coefficient=width_coefficient,
depth_coefficient=depth_coefficient,
image_size=image_size,
dropout_rate=dropout_rate,
num_classes=num_classes,
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
drop_connect_rate=drop_connect_rate,
depth_divisor=8,
min_depth=None,
include_top=include_top,
)
return blocks_args, global_params
def get_model_params(model_name, override_params):
"""Get the block args and global params for a given model name.
Args:
model_name (str): Model's name.
override_params (dict): A dict to modify global_params.
Returns:
blocks_args, global_params
"""
if model_name.startswith('efficientnet'):
w, d, s, p = efficientnet_params(model_name)
# note: all models have drop connect rate = 0.2
blocks_args, global_params = efficientnet(
width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s)
else:
raise NotImplementedError('model name is not pre-defined: {}'.format(model_name))
if override_params:
# ValueError will be raised here if override_params has fields not included in global_params.
global_params = global_params._replace(**override_params)
return blocks_args, global_params
class MBConvBlock(nn.Module):
"""Mobile Inverted Residual Bottleneck Block.
Args:
block_args (namedtuple): BlockArgs, defined in utils.py.
global_params (namedtuple): GlobalParam, defined in utils.py.
image_size (tuple or list): [image_height, image_width].
References:
[1] https://arxiv.org/abs/1704.04861 (MobileNet v1)
[2] https://arxiv.org/abs/1801.04381 (MobileNet v2)
[3] https://arxiv.org/abs/1905.02244 (MobileNet v3)
"""
def __init__(self, block_args, global_params, image_size=None):
super().__init__()
self._block_args = block_args
self._bn_mom = 1 - global_params.batch_norm_momentum # pytorch's difference from tensorflow
self._bn_eps = global_params.batch_norm_epsilon
self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
self.id_skip = block_args.id_skip # whether to use skip connection and drop connect
# Expansion phase (Inverted Bottleneck)
inp = self._block_args.input_filters # number of input channels
oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels
if self._block_args.expand_ratio != 1:
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size
# Depthwise convolution phase
k = self._block_args.kernel_size
s = self._block_args.stride
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._depthwise_conv = Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
image_size = calculate_output_image_size(image_size, s)
# Squeeze and Excitation layer, if desired
if self.has_se:
Conv2d = get_same_padding_conv2d(image_size=(1, 1))
num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Pointwise convolution phase
final_oup = self._block_args.output_filters
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
self._swish = MemoryEfficientSwish()
def forward(self, inputs, drop_connect_rate=None):
"""MBConvBlock's forward function.
Args:
inputs (tensor): Input tensor.
drop_connect_rate (bool): Drop connect rate (float, between 0 and 1).
Returns:
Output of this block after processing.
"""
# Expansion and Depthwise Convolution
x = inputs
if self._block_args.expand_ratio != 1:
x = self._expand_conv(inputs)
x = self._bn0(x)
x = self._swish(x)
x = self._depthwise_conv(x)
x = self._bn1(x)
x = self._swish(x)
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_reduce(x_squeezed)
x_squeezed = self._swish(x_squeezed)
x_squeezed = self._se_expand(x_squeezed)
x = torch.sigmoid(x_squeezed) * x
# Pointwise Convolution
x = self._project_conv(x)
x = self._bn2(x)
# Skip connection and drop connect
input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
# The combination of skip connection and drop connect brings about stochastic depth.
if drop_connect_rate:
x = drop_connect(x, p=drop_connect_rate, training=self.training)
x = x + inputs # skip connection
return x
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export).
Args:
memory_efficient (bool): Whether to use memory-efficient version of swish.
"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
class EfficientNet(nn.Module):
def __init__(self, out_h=7, out_w=7, feat_dim=512, blocks_args=None, global_params=None):
super().__init__()
assert isinstance(blocks_args, list), 'blocks_args should be a list'
assert len(blocks_args) > 0, 'block args must be greater than 0'
self._global_params = global_params
self._blocks_args = blocks_args
# Batch norm parameters
bn_mom = 1 - self._global_params.batch_norm_momentum
bn_eps = self._global_params.batch_norm_epsilon
# Get stem static or dynamic convolution depending on image size
image_size = global_params.image_size
Conv2d = get_same_padding_conv2d(image_size=image_size)
# Stem
in_channels = 3 # rgb
out_channels = round_filters(32, self._global_params) # number of output channels
self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
image_size = calculate_output_image_size(image_size, 2)
# Build blocks
self._blocks = nn.ModuleList([])
for block_args in self._blocks_args:
# Update block input and output filters based on depth multiplier.
block_args = block_args._replace(
input_filters=round_filters(block_args.input_filters, self._global_params),
output_filters=round_filters(block_args.output_filters, self._global_params),
num_repeat=round_repeats(block_args.num_repeat, self._global_params)
)
# The first block needs to take care of stride and filter size increase.
self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
image_size = calculate_output_image_size(image_size, block_args.stride)
if block_args.num_repeat > 1: # modify block_args to keep same output size
block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
for _ in range(block_args.num_repeat - 1):
self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
# image_size = calculate_output_image_size(image_size, block_args.stride) # stride = 1
# Head
in_channels = block_args.output_filters # output of final block
out_channels = round_filters(1280, self._global_params)
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
# Final linear layer
self._avg_pooling = nn.AdaptiveAvgPool2d(1)
self._dropout = nn.Dropout(self._global_params.dropout_rate)
self._fc = nn.Linear(out_channels, self._global_params.num_classes)
self._swish = MemoryEfficientSwish()
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export).
Args:
memory_efficient (bool): Whether to use memory-efficient version of swish.
"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
for block in self._blocks:
block.set_swish(memory_efficient)
@classmethod
def my_encoder(cls, model_name='efficientnet-b0'):
model = cls.from_name(model_name)
class Encoder(nn.Module):
def __init__(self):
super().__init__()
self.stem_conv = model._conv_stem
self.stem_batch_norm = model._bn0
self.stem_swish = Swish()
self.blocks = model._blocks
def forward(self, x):
# Stem
x = self.stem_conv(x)
x = self.stem_batch_norm(x)
x = self.stem_swish(x)
# Blocks
for idx, block in enumerate(self.blocks):
drop_connect_rate = 0.2
if drop_connect_rate:
drop_connect_rate *= idx / len(self.blocks)
x = block(x, drop_connect_rate)
return x
return Encoder()
@classmethod
def from_name(cls, model_name, in_channels=3, **override_params):
"""create an efficientnet model according to name.
Args:
model_name (str): Name for efficientnet.
in_channels (int): Input data's channel number.
override_params (other key word params):
Params to override model's global_params.
Optional key:
'width_coefficient', 'depth_coefficient',
'image_size', 'dropout_rate',
'num_classes', 'batch_norm_momentum',
'batch_norm_epsilon', 'drop_connect_rate',
'depth_divisor', 'min_depth'
Returns:
An efficientnet model.
"""
blocks_args, global_params = get_model_params(model_name, override_params)
model = cls(blocks_args=blocks_args, global_params=global_params)
model._change_in_channels(in_channels)
return model
def _change_in_channels(self, in_channels):
"""Adjust model's first convolution layer to in_channels, if in_channels not equals 3.
Args:
in_channels (int): Input data's channel number.
"""
if in_channels != 3:
Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size)
out_channels = round_filters(32, self._global_params)
self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
class AbsWeighting(nn.Module):
def __init__(self):
super(AbsWeighting, self).__init__()
self.rep_grad = True
self.epoch = 0
def init_param(self):
r"""Define and initialize some trainable parameters required by specific weighting methods.
"""
self.train_loss_buffer = np.zeros([self.task_num, 9999])
self.rep_tasks = {}
self.rep = {}
self.grads_buffer = [None] * self.task_num
def update_epoch(self):
self.epoch += 1
def _compute_grad_dim(self):
self.grad_index = []
for param in self.get_share_params():
self.grad_index.append(param.data.numel())
self.grad_dim = sum(self.grad_index)
def _grad2vec(self):
grad = torch.zeros(self.grad_dim)
count = 0
for param in self.get_share_params():
if param.grad is not None:
beg = 0 if count == 0 else sum(self.grad_index[:count])
end = sum(self.grad_index[:(count + 1)])
grad[beg:end] = param.grad.data.view(-1)
count += 1
return grad
def _compute_grad(self, losses, mode, rep_grad=False):
# if not isinstance(self.rep, dict):
# grads = torch.zeros(self.task_num, *self.rep.size()).to(self.device)
# else:
grads = [torch.zeros(*self.rep[task].size()) for task in self.task_name]
for tn, task in enumerate(self.task_name):
ret_graph = True if (tn + 1) != self.task_num else False
losses[tn].backward(retain_graph=ret_graph)
grads[tn] = self.rep_tasks[task].grad.data.clone()
# grads[tn] = torch.mean(self.rep_tasks[task].grad.data.clone(), dim=0)
return grads
def _reset_grad(self, new_grads):
count = 0
for param in self.get_share_params():
if param.grad is not None:
beg = 0 if count == 0 else sum(self.grad_index[:count])
end = sum(self.grad_index[:(count + 1)])
param.grad.data = new_grads[beg:end].contiguous().view(param.data.size()).data.clone()
count += 1
def _get_grads(self, losses, mode='backward'):
r"""This function is used to return the gradients of representations or shared parameters.
If ``rep_grad`` is ``True``, it returns a list with two elements. The first element is \
the gradients of the representations with the size of [task_num, batch_size, rep_size]. \
The second element is the resized gradients with size of [task_num, -1], which means \
the gradient of each task is resized as a vector.
If ``rep_grad`` is ``False``, it returns the gradients of the shared parameters with size \
of [task_num, -1], which means the gradient of each task is resized as a vector.
"""
if self.rep_grad:
per_grads = self._compute_grad(losses, mode, rep_grad=True)
if not isinstance(self.rep, dict):
grads = per_grads.reshape(self.task_num, self.rep.size()[0], -1).sum(1)
else:
try:
grads = torch.stack(per_grads).sum(1).view(self.task_num, -1)
except:
raise ValueError('The representation dimensions of different tasks must be consistent')
return [per_grads, grads]
else:
self._compute_grad_dim()
grads = self._compute_grad(losses, mode)
return grads
def _backward_new_grads(self, batch_weight, per_grads=None, grads=None):
r"""This function is used to reset the gradients and make a backward.
Args:
batch_weight (torch.Tensor): A tensor with size of [task_num].
per_grad (torch.Tensor): It is needed if ``rep_grad`` is True. The gradients of the representations.
grads (torch.Tensor): It is needed if ``rep_grad`` is False. The gradients of the shared parameters.
"""
if self.rep_grad:
if not isinstance(self.rep, dict):
transformed_grad = torch.einsum('i, i... -> ...', batch_weight, per_grads)
self.rep.backward(transformed_grad)
else:
for tn, task in enumerate(self.task_name):
rg = True if (tn + 1) != self.task_num else False
self.rep[task].backward(batch_weight[tn] * per_grads[tn], retain_graph=rg)
else:
new_grads = torch.einsum('i, i... -> ...', batch_weight, grads)
self._reset_grad(new_grads)
class MomentumMask(AbsWeighting):
def __init__(self):
super(MomentumMask, self).__init__()
self.rep_grad = True
def backward(self, losses, idx_group):
beta = 0.95
per_grads = self._compute_grad(losses, mode='backward', rep_grad=True)
per_grads = torch.cat(per_grads)
inputs = torch.cat(list(self.rep.values()))
group_len = [0]
for gop in idx_group:
group_len.append(len(gop) + group_len[-1])
grads = []
tmp_grads = (per_grads * inputs.sign()).detach()
for i in range(1, len(group_len)):
cur_grads = tmp_grads[group_len[i - 1]:group_len[i]].sum(0)
if self.grads_buffer[i - 1] is not None:
cur_grads = beta * self.grads_buffer[i - 1] + (1 - beta) * cur_grads
self.grads_buffer[i - 1] = cur_grads
grads.append(cur_grads)
grads = torch.stack(grads)
P = 0.5 * (1 + grads.sum(0) / (grads.abs().sum(0) + 1e-7))
U = torch.rand_like(P)
M = P.gt(U).unsqueeze(0).repeat_interleave(self.task_num, dim=0) * grads.gt(0) + \
P.lt(U).unsqueeze(0).repeat_interleave(self.task_num, dim=0) * grads.lt(0)
transformed_grad = []
for i in range(1, len(group_len)):
cur_per_grads = per_grads[group_len[i - 1]:group_len[i]]
cur_M = M[i - 1].unsqueeze(0).repeat_interleave(cur_per_grads.size()[0], dim=0)
cur_M = cur_M.detach()
transformed_grad.append(cur_per_grads * cur_M)
for tn, task in enumerate(self.task_name):
ret_graph = True if tn != len(self.task_name) - 1 else False
self.rep[task].backward(transformed_grad[tn], retain_graph=ret_graph)
return None
class STATE(MomentumMask):
def __init__(self, num_class=29, n_fc=0):
super().__init__()
self.baseline_extractor = EfficientNet.my_encoder('efficientnet-b0')
self.output_layer = Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(320 * 1 * 1, 256),
BatchNorm1d(256),
)
self.invTrans = transforms.Compose(
[transforms.Normalize(mean=[0., 0., 0.], std=[1 / 0.229, 1 / 0.224, 1 / 0.225]),
transforms.Normalize(mean=[-0.485, -0.456, -0.406], std=[1., 1., 1.])])
dim = 320
self.norm2 = nn.LayerNorm(dim)
self.num_heads = 10
self.proj_qv = nn.Linear(dim, dim * 2, bias=True)
self.proj_k = nn.Linear(dim, dim, bias=True)
self.proj_final = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
self.mlp = nn.Sequential(
nn.Linear(dim, dim * 2),
nn.GELU(),
nn.Linear(dim * 2, dim)
)
self.n_fc = n_fc
for i in range(self.n_fc):
setattr(self, 'fc{}'.format(i), torch.nn.Linear(256, num_class))
self.task_name = ['fc%d' % idx for idx in range(self.n_fc)]
self.task_num = len(self.task_name)
self.init_param()
def smooth_attention(self, rgb, feat, nrows=16, ncols=16):
pre_r, pre_h = 4, 4
nrows, ncols = nrows // pre_r, ncols // pre_h
x = self.invTrans(rgb)
x = x * 255
x = x.long()
x = rgb_to_grayscale(x)
b, c, r, h = x.shape
x = F.interpolate(x.double(), (r // pre_r, h // pre_h)).long()
x.clamp_(0, 255)
b, c, r, h = x.shape
x = x.reshape(b, h // nrows, nrows, -1, ncols).transpose(2, 3).reshape(b, -1, nrows * ncols)
p = torch.nn.functional.one_hot(x, 256).sum(dim=[2])
p = p / p.sum(dim=2).unsqueeze(2)
ent = -torch.where(p > 0, p * p.log(), p.new([0.0])).sum(dim=2)
b, c, h, w = feat.shape
ent = F.normalize(ent)
ent = ent.unsqueeze(2)
ent = torch.cat(c * [ent], dim=2)
feat = feat.permute(0, 2, 3, 1).contiguous().view(b, h * w, c)
shortcut = feat
qv = self.proj_qv(feat).reshape(b, h * w, 2, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
q, v = qv[0], qv[1]
b, n, c = ent.shape
k = self.proj_k(ent).reshape(b, n, 1, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
attn = (q @ k.transpose(-2, -1))
attn = self.softmax(attn)
feat = (attn @ v).transpose(1, 2).reshape(b, h * w, c)
feat = self.proj_final(feat)
feat = shortcut + feat
feat = feat + self.mlp(self.norm2(feat))
feat = feat.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
return feat, attn
def get_share_params(self):
r"""Return the shared parameters of the model.
"""
return self.output_layer.parameters()
def forward(self, x):
rgb = x.clone()
x_f = self.baseline_extractor(x)
x_a, _ = self.smooth_attention(rgb, x_f)
trace = self.output_layer(x_a)
return trace
def _prepare_rep(self, rep, idx, same_rep=False):
task = self.task_name[idx]
self.rep[task] = rep
self.rep_tasks[task] = rep.detach().clone()
self.rep_tasks[task].requires_grad = True
return self.rep_tasks[task]
def fc_forward(self, feat, idx):
return getattr(self, 'fc{}'.format(idx))(feat)