- yolofastestv2
- yolov10
指标均是在导出的已量化的tflite模型上测量的。没有角标的模型名称表示是使用了迁移学习在预训练模型上进行训练的。"tfs"表示没有使用预训练。"sp"表示使用了空间分离式模型推理。 同时"*"表示该指标来源于stm32ai-modelzoo 。
模型名称 |
实现框架 |
数据集 |
输入图像分辨率 |
mAP |
MACCs (M) |
激活层RAM占用 (KB) |
ROM占用 (KB) |
推理框架 |
Yolo-FastestV2 sp |
Pytorch |
COCO |
192x192x3 |
41.52% |
32.47 |
116.18 |
385.79 |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp tfs |
Pytorch |
COCO |
192x192x3 |
39.75% |
32.47 |
116.18 |
385.79 |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp |
Pytorch |
COCO |
192x192x3 |
41.52% |
- |
91.76 |
- |
TinyEngine |
Yolo-FastestV2 sp tfs |
Pytorch |
COCO |
192x192x3 |
39.75% |
- |
91.76 |
- |
TinyEngine |
Yolo-FastestV2 sp |
Pytorch |
COCO |
256x256x3 |
49.00% |
57.71 |
214.99 |
385.79 |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp tfs |
Pytorch |
COCO |
256x256x3 |
46.87% |
57.71 |
214.99 |
385.79 |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp |
Pytorch |
COCO |
256x256x3 |
49.00% |
- |
157.36 |
- |
TinyEngine |
Yolo-FastestV2 sp tfs |
Pytorch |
COCO |
256x256x3 |
46.87% |
- |
157.36 |
- |
TinyEngine |
YoloV10 sp |
Pytorch |
COCO Person |
256x256x3 |
52.45% |
57.24 |
148.86 |
372.51 |
X-CUBE-AI 8.0.1 |
YoloV10 sp tfs |
Pytorch |
COCO Person |
256x256x3 |
50.00% |
57.24 |
148.86 |
372.51 |
X-CUBE-AI 8.0.1 |
YoloV10 sp |
Pytorch |
COCO Person |
256x256x3 |
52.45% |
- |
144.82 |
- |
TinyEngine |
YoloV10 sp tfs |
Pytorch |
COCO Person |
256x256x3 |
50.00% |
- |
144.82 |
- |
TinyEngine |
*SSD MobileNet v1 0.25 |
TensorFlow |
COCO Person |
192x192x3 |
33.70% |
40.48 |
266.3 |
438.28 |
X-CUBE-AI 8.1.0 |
*SSD MobileNet v1 0.25 |
TensorFlow |
COCO Person |
256x256x3 |
46.26% |
72.55 |
456.1 |
595.66 |
X-CUBE-AI 8.1.0 |
*ST Yolo LC v1 tfs |
TensorFlow |
COCO Person |
192x192x3 |
31.61% |
61.9 |
166.29 |
276.73 |
X-CUBE-AI 9.1.0 |
*ST Yolo LC v1 tfs |
TensorFlow |
COCO Person |
256x256x3 |
40.58% |
110.05 |
278.29 |
276.73 |
X-CUBE-AI 9.1.0 |
*SSD MobileNet v2 0.35 FPN-lite |
TensorFlow |
COCO Person |
224x224x3 |
48.67% |
167.15 |
956.82 |
1007.78 |
X-CUBE-AI 9.1.0 |
- EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH = 0.001
模型名称 |
实现框架 |
输入图像分辨率 |
mAP |
MACCs (M) |
激活层RAM占用 (KB) |
ROM占用 (KB) |
推理框架 |
Yolo-FastestV2 sp |
Pytorch |
192x192x3 |
17.33% |
32.47 |
116.18 |
385.79 |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp tfs |
Pytorch |
192x192x3 |
11.82% |
32.47 |
116.18 |
385.79 |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp |
Pytorch |
256x256x3 |
21.11% |
57.71 |
214.99 |
385.79 |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp tfs |
Pytorch |
256x256x3 |
16.18% |
57.71 |
214.99 |
385.79 |
X-CUBE-AI 8.0.1 |
YoloV10t sp tfs |
Pytorch |
256x256x3 |
19.21% |
57.24 |
148.86 |
372.51 |
X-CUBE-AI 8.0.1 |
- EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH = 0.001
模型名称 |
实现框架 |
输入图像分辨率 |
mAP |
MACCs (M) |
激活层RAM占用 (KB) |
ROM占用 (KB) |
推理框架 |
Yolo-FastestV2 sp tfs |
Pytorch |
256x256x3 |
54.98% |
57.71 |
214.99 |
385.79 |
X-CUBE-AI 8.0.1 |
- EVAL_IOU = 0.5, NMS_THRESH = 0.4, SCORE_THRESH = 0.01
推理时间是使用GCC编译的程序测量出来的时间,ARMCC编译的程序测量出的时间大约多30%。
模型名称 |
数据格式 |
图像分辨率 |
芯片型号 |
芯片类型 |
频率 |
推理时间(ms) |
推理框架 |
Yolo-FastestV2 sp |
Int8 |
192x192x3 |
GD32F470I |
1 CPU |
240 MHz |
500.86 ms |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp |
Int8 |
192x192x3 |
GD32F470I |
1 CPU |
240 MHz |
448.24 ms |
X-CUBE-AI 9.0.0 |
Yolo-FastestV2 sp |
Int8 |
192x192x3 |
GD32F470I |
1 CPU |
240 MHz |
430.52 ms |
TinyEngine |
Yolo-FastestV2 sp |
Int8 |
256x256x3 |
GD32F470I |
1 CPU |
240 MHz |
863.13 ms |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp |
Int8 |
256x256x3 |
GD32F470I |
1 CPU |
240 MHz |
784.14 ms |
X-CUBE-AI 9.0.0 |
Yolo-FastestV2 sp |
Int8 |
256x256x3 |
GD32F470I |
1 CPU |
240 MHz |
749.00 ms |
TinyEngine |
Yolo-FastestV2 sp |
Int8 |
192x192x3 |
GD32H759I |
1 CPU |
600 MHz |
143.66 ms |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp |
Int8 |
192x192x3 |
GD32H759I |
1 CPU |
600 MHz |
132.73 ms |
TinyEngine |
Yolo-FastestV2 sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
235.58 ms |
X-CUBE-AI 8.0.1 |
Yolo-FastestV2 sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
221.51 ms |
X-CUBE-AI 9.0.0 |
Yolo-FastestV2 sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
234.13 ms |
X-CUBE-AI 9.1.0 |
Yolo-FastestV2 sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
219.36 ms |
TinyEngine |
YoloV10t sp |
Int8 |
256x256x3 |
GD32F470I |
1 CPU |
240 MHz |
776.14 ms |
X-CUBE-AI 9.0.0 |
YoloV10t sp |
Int8 |
256x256x3 |
GD32F470I |
1 CPU |
240 MHz |
707.87 ms |
TinyEngine |
YoloV10t sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
219.70 ms |
X-CUBE-AI 8.0.1 |
YoloV10t sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
192.57 ms |
X-CUBE-AI 9.0.0 |
YoloV10t sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
208.77 ms |
X-CUBE-AI 9.1.0 |
YoloV10t sp |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
190.61 ms |
TinyEngine |
*SSD Mobilenet v1 0.25 |
Int8 |
192x192x3 |
STM32H747I |
1 CPU |
400 MHz |
149.22 ms |
X-CUBE-AI 9.1.0 |
SSD Mobilenet v1 0.25 |
Int8 |
192x192x3 |
GD32H759I |
1 CPU |
600 MHz |
121.10 ms |
X-CUBE-AI 9.1.0 |
*SSD Mobilenet v1 0.25 |
Int8 |
256x256x3 |
STM32H747I |
1 CPU |
400 MHz |
266.4 ms |
X-CUBE-AI 9.1.0 |
SSD Mobilenet v1 0.25 |
Int8 |
256x256x3 |
GD32H759I |
1 CPU |
600 MHz |
208.05 ms |
X-CUBE-AI 9.1.0 |
*ST Yolo LC v1 |
Int8 |
192x192x3 |
STM32H747I |
1 CPU |
400 MHz |
179.35 ms |
X-CUBE-AI 9.1.0 |
*ST Yolo LC v1 |
Int8 |
256x256x3 |
STM32H747I |
1 CPU |
400 MHz |
321.23 ms |
X-CUBE-AI 9.1.0 |
*SSD MobileNet v2 0.35 FPN-lite |
Int8 |
224x224x3 |
STM32H747I |
1 CPU |
400 MHz |
675.63 ms |
X-CUBE-AI 9.1.0 |