diff --git "a/GDP/.ipynb_checkpoints/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226-checkpoint.ipynb" "b/GDP/.ipynb_checkpoints/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226-checkpoint.ipynb" deleted file mode 100644 index e451353..0000000 --- "a/GDP/.ipynb_checkpoints/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226-checkpoint.ipynb" +++ /dev/null @@ -1,1525 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 各国GDP数据可视化\n", - "\n", - "# 数据来自世界银行" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 导入资源包,如下:\n", - "### Pandas, numpy, seaborn 和 matplotlib\n" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "Country_GDP= pd.read_csv(\"Country_GDP.csv\",sep=\";\")" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.DataFrame(Country_GDP)" - ] - }, - { - "cell_type": "code", - "execution_count": 179, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['Country Name', 'Country Code', 'Indicator Name', 'Indicator Code',\n", - " '1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968',\n", - " '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976', '1977',\n", - " '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986',\n", - " '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',\n", - " '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004',\n", - " '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',\n", - " '2014', '2015', '2016', '2017', '2018', '2019', 'Unnamed: 64',\n", - " 'increaseRate2013-2018'],\n", - " dtype='object')" - ] - }, - "execution_count": 179, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Country_GDP.columns" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": {}, - "outputs": [], - "source": [ - "df['increaseRate2013-2018'] = (df[\"2018\"] - df[\"1978\"])/df[\"1990\"] *100\n" - ] - }, - { - "cell_type": "code", - "execution_count": 143, - "metadata": {}, - "outputs": [], - "source": [ - "#df2 = df.sort_values(by='increaseRate2013-2018',ascending=True)\n", - "#DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "keyword can't be an expression (<ipython-input-144-7aac8fac96e5>, line 2)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"<ipython-input-144-7aac8fac96e5>\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m sns.barplot(df2['increaseRate2013-2018'], horiz=TRUE,names.arg=df2['Country Name'])\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m keyword can't be an expression\n" - ] - } - ], - "source": [ - "plt.figure(figsize=(300,30))\n", - "sns.barplot(df2['increaseRate2013-2018'], horiz=TRUE,names.arg=df2['Country Name'])\n", - "\n", - "#barplot(counts, main=\"Car Distribution\", horiz=TRUE,names.arg=c(\"3 Gears\", \"4 Gears\", \"5 Gears\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": {}, - "outputs": [], - "source": [ - "pd.set_option('display.max_rows',20)" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": {}, - "outputs": [], - "source": [ - "#sns.plot.barh(df2['increaseRate2013-2018'],df2['Country Name'])" - ] - }, - { - "cell_type": "code", - "execution_count": 190, - "metadata": {}, - "outputs": [], - "source": [ - "#plt.figure(figsize=(100,30))\n", - "\n", - "#data=df.iloc[0:25,]\n", - "#sns.barplot(x='2005', y='Country Name',data=df.iloc[0:20,], orient='h')" - ] - }, - { - "cell_type": "code", - "execution_count": 231, - "metadata": {}, - "outputs": [], - "source": [ - "df=df.drop(df[df['Country Name']==\"World\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"High income\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"OECD members\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Post-demographic dividend\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Europe & Central Asia\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"European Union\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"IBRD only\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Middle income\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Low & middle income\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"IDA & IBRD total\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Post-demographic dividend\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Late-demographic dividend\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Upper middle income\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Late-demographic dividend\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"North America\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"East Asia & Pacific\"].index,axis=0)\n", - "\n", - "df=df.drop(df[df['Country Name']==\"Euro area\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Early-demographic dividend\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"East Asia & Pacific (excluding high income)\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"East Asia & Pacific (IDA & IBRD countries)\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Late-demographic dividend\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Latin America & Caribbean\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Latin America & the Caribbean (IDA & IBRD coun...\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Latin America & Caribbean (excluding high income)\"].index,axis=0)\n", - "\n", - "\n", - "df=df.drop(df[df['Country Name']==\"Lower middle income\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Latin America & the Caribbean (IDA & IBRD coun...\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Europe & Central Asia (IDA & IBRD countries)\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Middle East & North Africa\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"South Asia (IDA & IBRD)\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Europe & Central Asia (excluding high income)\t\"].index,axis=0)\n", - "df=df.drop(df[df['Country Name']==\"Arab World\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"TLA\"].index,axis=0)\n", - "\n", - "\n", - "\n", - "df=df.drop(df[df['Country Code']==\"ECA\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"SAS\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"ECA\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"IDA\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"SSF\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"TSS\"].index,axis=0)\n", - "\n", - "df=df.drop(df[df['Country Code']==\"SSA\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"CEB\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"PRE\"].index,axis=0)\n", - "\n", - "\n", - "df=df.drop(df[df['Country Code']==\"LDC\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"IDB\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"IDX\"].index,axis=0)\n", - "\n", - "df=df.drop(df[df['Country Code']==\"FCS\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"IDB\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"HPC\"].index,axis=0)\n", - "\n", - "df=df.drop(df[df['Country Code']==\"OSS\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"SST\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"LIC\"].index,axis=0)\n", - "\n", - "\n", - "df=df.drop(df[df['Country Code']==\"MNA\"].index,axis=0)\n", - "df=df.drop(df[df['Country Code']==\"TMN\"].index,axis=0)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 232, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>Country Name</th>\n", - " <th>Country Code</th>\n", - " <th>Indicator Name</th>\n", - " <th>Indicator Code</th>\n", - " <th>1960</th>\n", - " <th>1961</th>\n", - " <th>1962</th>\n", - " <th>1963</th>\n", - " <th>1964</th>\n", - " <th>1965</th>\n", - " <th>...</th>\n", - " <th>2012</th>\n", - " <th>2013</th>\n", - " <th>2014</th>\n", - " <th>2015</th>\n", - " <th>2016</th>\n", - " <th>2017</th>\n", - " <th>2018</th>\n", - " <th>2019</th>\n", - " <th>Unnamed: 64</th>\n", - " <th>increaseRate2013-2018</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>249</th>\n", - " <td>United States</td>\n", - " <td>USA</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>5.433000e+11</td>\n", - " <td>5.633000e+11</td>\n", - " <td>6.051000e+11</td>\n", - " <td>6.386000e+11</td>\n", - " <td>6.858000e+11</td>\n", - " <td>7.437000e+11</td>\n", - " <td>...</td>\n", - " <td>1.619701e+13</td>\n", - " <td>1.678485e+13</td>\n", - " <td>1.752175e+13</td>\n", - " <td>1.821930e+13</td>\n", - " <td>1.870719e+13</td>\n", - " <td>1.948539e+13</td>\n", - " <td>2.049410e+13</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>771.496373</td>\n", - " </tr>\n", - " <tr>\n", - " <th>117</th>\n", - " <td>Japan</td>\n", - " <td>JPN</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>4.430734e+10</td>\n", - " <td>5.350862e+10</td>\n", - " <td>6.072302e+10</td>\n", - " <td>6.949813e+10</td>\n", - " <td>8.174901e+10</td>\n", - " <td>9.095028e+10</td>\n", - " <td>...</td>\n", - " <td>6.203213e+12</td>\n", - " <td>5.155717e+12</td>\n", - " <td>4.850414e+12</td>\n", - " <td>4.389476e+12</td>\n", - " <td>4.926667e+12</td>\n", - " <td>4.859951e+12</td>\n", - " <td>4.970916e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>390.415929</td>\n", - " </tr>\n", - " <tr>\n", - " <th>53</th>\n", - " <td>Germany</td>\n", - " <td>DEU</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>...</td>\n", - " <td>3.543984e+12</td>\n", - " <td>3.752514e+12</td>\n", - " <td>3.898727e+12</td>\n", - " <td>3.381389e+12</td>\n", - " <td>3.495163e+12</td>\n", - " <td>3.693204e+12</td>\n", - " <td>3.996759e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>441.809779</td>\n", - " </tr>\n", - " <tr>\n", - " <th>79</th>\n", - " <td>United Kingdom</td>\n", - " <td>GBR</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>7.232805e+10</td>\n", - " <td>7.669436e+10</td>\n", - " <td>8.060194e+10</td>\n", - " <td>8.544377e+10</td>\n", - " <td>9.338760e+10</td>\n", - " <td>1.005958e+11</td>\n", - " <td>...</td>\n", - " <td>2.676605e+12</td>\n", - " <td>2.753565e+12</td>\n", - " <td>3.034729e+12</td>\n", - " <td>2.896421e+12</td>\n", - " <td>2.659239e+12</td>\n", - " <td>2.637866e+12</td>\n", - " <td>2.825208e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>741.128517</td>\n", - " </tr>\n", - " <tr>\n", - " <th>75</th>\n", - " <td>France</td>\n", - " <td>FRA</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>6.265147e+10</td>\n", - " <td>6.834674e+10</td>\n", - " <td>7.631378e+10</td>\n", - " <td>8.555111e+10</td>\n", - " <td>9.490659e+10</td>\n", - " <td>1.021606e+11</td>\n", - " <td>...</td>\n", - " <td>2.683825e+12</td>\n", - " <td>2.811078e+12</td>\n", - " <td>2.852166e+12</td>\n", - " <td>2.438208e+12</td>\n", - " <td>2.471286e+12</td>\n", - " <td>2.586285e+12</td>\n", - " <td>2.777535e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>448.153190</td>\n", - " </tr>\n", - " <tr>\n", - " <th>38</th>\n", - " <td>China</td>\n", - " <td>CHN</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>5.971647e+10</td>\n", - " <td>5.005687e+10</td>\n", - " <td>4.720936e+10</td>\n", - " <td>5.070680e+10</td>\n", - " <td>5.970834e+10</td>\n", - " <td>7.043627e+10</td>\n", - " <td>...</td>\n", - " <td>8.532231e+12</td>\n", - " <td>9.570406e+12</td>\n", - " <td>1.043853e+13</td>\n", - " <td>1.101554e+13</td>\n", - " <td>1.113795e+13</td>\n", - " <td>1.214349e+13</td>\n", - " <td>1.360815e+13</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>8999.962122</td>\n", - " </tr>\n", - " <tr>\n", - " <th>114</th>\n", - " <td>Italy</td>\n", - " <td>ITA</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>4.038529e+10</td>\n", - " <td>4.484276e+10</td>\n", - " <td>5.038389e+10</td>\n", - " <td>5.771074e+10</td>\n", - " <td>6.317542e+10</td>\n", - " <td>6.797815e+10</td>\n", - " <td>...</td>\n", - " <td>2.072823e+12</td>\n", - " <td>2.130491e+12</td>\n", - " <td>2.151733e+12</td>\n", - " <td>1.832273e+12</td>\n", - " <td>1.869202e+12</td>\n", - " <td>1.946570e+12</td>\n", - " <td>2.073902e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>560.438213</td>\n", - " </tr>\n", - " <tr>\n", - " <th>33</th>\n", - " <td>Canada</td>\n", - " <td>CAN</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>4.155599e+10</td>\n", - " <td>4.286809e+10</td>\n", - " <td>4.571315e+10</td>\n", - " <td>5.012664e+10</td>\n", - " <td>5.534224e+10</td>\n", - " <td>...</td>\n", - " <td>1.823967e+12</td>\n", - " <td>1.842018e+12</td>\n", - " <td>1.801480e+12</td>\n", - " <td>1.552900e+12</td>\n", - " <td>1.526706e+12</td>\n", - " <td>1.646867e+12</td>\n", - " <td>1.712510e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>683.281146</td>\n", - " </tr>\n", - " <tr>\n", - " <th>152</th>\n", - " <td>Mexico</td>\n", - " <td>MEX</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.304000e+10</td>\n", - " <td>1.416000e+10</td>\n", - " <td>1.520000e+10</td>\n", - " <td>1.696000e+10</td>\n", - " <td>2.008000e+10</td>\n", - " <td>2.184000e+10</td>\n", - " <td>...</td>\n", - " <td>1.201090e+12</td>\n", - " <td>1.274443e+12</td>\n", - " <td>1.314564e+12</td>\n", - " <td>1.170565e+12</td>\n", - " <td>1.077828e+12</td>\n", - " <td>1.158071e+12</td>\n", - " <td>1.223809e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1093.959888</td>\n", - " </tr>\n", - " <tr>\n", - " <th>27</th>\n", - " <td>Brazil</td>\n", - " <td>BRA</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.516557e+10</td>\n", - " <td>1.523685e+10</td>\n", - " <td>1.992629e+10</td>\n", - " <td>2.302148e+10</td>\n", - " <td>2.121189e+10</td>\n", - " <td>2.179004e+10</td>\n", - " <td>...</td>\n", - " <td>2.465189e+12</td>\n", - " <td>2.472806e+12</td>\n", - " <td>2.455994e+12</td>\n", - " <td>1.802214e+12</td>\n", - " <td>1.796275e+12</td>\n", - " <td>2.053595e+12</td>\n", - " <td>1.868626e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>830.586548</td>\n", - " </tr>\n", - " <tr>\n", - " <th>68</th>\n", - " <td>Spain</td>\n", - " <td>ESP</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.207213e+10</td>\n", - " <td>1.383430e+10</td>\n", - " <td>1.613855e+10</td>\n", - " <td>1.907491e+10</td>\n", - " <td>2.134384e+10</td>\n", - " <td>2.475696e+10</td>\n", - " <td>...</td>\n", - " <td>1.336019e+12</td>\n", - " <td>1.361854e+12</td>\n", - " <td>1.376911e+12</td>\n", - " <td>1.199084e+12</td>\n", - " <td>1.237499e+12</td>\n", - " <td>1.314314e+12</td>\n", - " <td>1.426189e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>790.458368</td>\n", - " </tr>\n", - " <tr>\n", - " <th>124</th>\n", - " <td>Korea, Rep.</td>\n", - " <td>KOR</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>3.957240e+09</td>\n", - " <td>2.417638e+09</td>\n", - " <td>2.813857e+09</td>\n", - " <td>3.988477e+09</td>\n", - " <td>3.458565e+09</td>\n", - " <td>3.120495e+09</td>\n", - " <td>...</td>\n", - " <td>1.222807e+12</td>\n", - " <td>1.305605e+12</td>\n", - " <td>1.411334e+12</td>\n", - " <td>1.382764e+12</td>\n", - " <td>1.414804e+12</td>\n", - " <td>1.530751e+12</td>\n", - " <td>1.619424e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>3032.310031</td>\n", - " </tr>\n", - " <tr>\n", - " <th>107</th>\n", - " <td>India</td>\n", - " <td>IND</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>3.702988e+10</td>\n", - " <td>3.923244e+10</td>\n", - " <td>4.216148e+10</td>\n", - " <td>4.842192e+10</td>\n", - " <td>5.648029e+10</td>\n", - " <td>5.955486e+10</td>\n", - " <td>...</td>\n", - " <td>1.827638e+12</td>\n", - " <td>1.856722e+12</td>\n", - " <td>2.039127e+12</td>\n", - " <td>2.103588e+12</td>\n", - " <td>2.290432e+12</td>\n", - " <td>2.652551e+12</td>\n", - " <td>2.726323e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1885.664011</td>\n", - " </tr>\n", - " <tr>\n", - " <th>174</th>\n", - " <td>Netherlands</td>\n", - " <td>NLD</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.227673e+10</td>\n", - " <td>1.349383e+10</td>\n", - " <td>1.464706e+10</td>\n", - " <td>1.589124e+10</td>\n", - " <td>1.869938e+10</td>\n", - " <td>2.100059e+10</td>\n", - " <td>...</td>\n", - " <td>8.389713e+11</td>\n", - " <td>8.769235e+11</td>\n", - " <td>8.909813e+11</td>\n", - " <td>7.652649e+11</td>\n", - " <td>7.835282e+11</td>\n", - " <td>8.318099e+11</td>\n", - " <td>9.136585e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>486.205729</td>\n", - " </tr>\n", - " <tr>\n", - " <th>11</th>\n", - " <td>Australia</td>\n", - " <td>AUS</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.857767e+10</td>\n", - " <td>1.965394e+10</td>\n", - " <td>1.989249e+10</td>\n", - " <td>2.150745e+10</td>\n", - " <td>2.376414e+10</td>\n", - " <td>2.593795e+10</td>\n", - " <td>...</td>\n", - " <td>1.546152e+12</td>\n", - " <td>1.576184e+12</td>\n", - " <td>1.467484e+12</td>\n", - " <td>1.351520e+12</td>\n", - " <td>1.210028e+12</td>\n", - " <td>1.330803e+12</td>\n", - " <td>1.432195e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1110.240417</td>\n", - " </tr>\n", - " <tr>\n", - " <th>7</th>\n", - " <td>Argentina</td>\n", - " <td>ARG</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>2.445060e+10</td>\n", - " <td>1.827212e+10</td>\n", - " <td>2.560525e+10</td>\n", - " <td>2.834471e+10</td>\n", - " <td>...</td>\n", - " <td>5.459824e+11</td>\n", - " <td>5.520251e+11</td>\n", - " <td>5.263197e+11</td>\n", - " <td>5.947493e+11</td>\n", - " <td>5.575314e+11</td>\n", - " <td>6.426959e+11</td>\n", - " <td>5.184751e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>792.647234</td>\n", - " </tr>\n", - " <tr>\n", - " <th>242</th>\n", - " <td>Turkey</td>\n", - " <td>TUR</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.399507e+10</td>\n", - " <td>7.988889e+09</td>\n", - " <td>8.922222e+09</td>\n", - " <td>1.035556e+10</td>\n", - " <td>1.117778e+10</td>\n", - " <td>1.196667e+10</td>\n", - " <td>...</td>\n", - " <td>8.739822e+11</td>\n", - " <td>9.505794e+11</td>\n", - " <td>9.341859e+11</td>\n", - " <td>8.597969e+11</td>\n", - " <td>8.637216e+11</td>\n", - " <td>8.515492e+11</td>\n", - " <td>7.665091e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1076.583456</td>\n", - " </tr>\n", - " <tr>\n", - " <th>35</th>\n", - " <td>Switzerland</td>\n", - " <td>CHE</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>9.522747e+09</td>\n", - " <td>1.071271e+10</td>\n", - " <td>1.187998e+10</td>\n", - " <td>1.306364e+10</td>\n", - " <td>1.448056e+10</td>\n", - " <td>1.534674e+10</td>\n", - " <td>...</td>\n", - " <td>6.680436e+11</td>\n", - " <td>6.885042e+11</td>\n", - " <td>7.091826e+11</td>\n", - " <td>6.798323e+11</td>\n", - " <td>6.701811e+11</td>\n", - " <td>6.789654e+11</td>\n", - " <td>7.055013e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " </tr>\n", - " <tr>\n", - " <th>221</th>\n", - " <td>Sweden</td>\n", - " <td>SWE</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.484287e+10</td>\n", - " <td>1.614716e+10</td>\n", - " <td>1.751148e+10</td>\n", - " <td>1.895413e+10</td>\n", - " <td>2.113724e+10</td>\n", - " <td>2.326032e+10</td>\n", - " <td>...</td>\n", - " <td>5.444815e+11</td>\n", - " <td>5.793607e+11</td>\n", - " <td>5.744131e+11</td>\n", - " <td>4.981176e+11</td>\n", - " <td>5.122052e+11</td>\n", - " <td>5.356074e+11</td>\n", - " <td>5.510317e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>434.541359</td>\n", - " </tr>\n", - " <tr>\n", - " <th>200</th>\n", - " <td>Russian Federation</td>\n", - " <td>RUS</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>...</td>\n", - " <td>2.210257e+12</td>\n", - " <td>2.297128e+12</td>\n", - " <td>2.059984e+12</td>\n", - " <td>1.363594e+12</td>\n", - " <td>1.282724e+12</td>\n", - " <td>1.578624e+12</td>\n", - " <td>1.657554e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " </tr>\n", - " <tr>\n", - " <th>15</th>\n", - " <td>Belgium</td>\n", - " <td>BEL</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.165872e+10</td>\n", - " <td>1.240015e+10</td>\n", - " <td>1.326402e+10</td>\n", - " <td>1.426002e+10</td>\n", - " <td>1.596011e+10</td>\n", - " <td>1.737146e+10</td>\n", - " <td>...</td>\n", - " <td>4.978842e+11</td>\n", - " <td>5.209255e+11</td>\n", - " <td>5.308084e+11</td>\n", - " <td>4.559403e+11</td>\n", - " <td>4.696772e+11</td>\n", - " <td>4.949017e+11</td>\n", - " <td>5.317669e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>422.423521</td>\n", - " </tr>\n", - " <tr>\n", - " <th>12</th>\n", - " <td>Austria</td>\n", - " <td>AUT</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>6.592694e+09</td>\n", - " <td>7.311750e+09</td>\n", - " <td>7.756110e+09</td>\n", - " <td>8.374175e+09</td>\n", - " <td>9.169984e+09</td>\n", - " <td>9.994071e+09</td>\n", - " <td>...</td>\n", - " <td>4.094252e+11</td>\n", - " <td>4.300687e+11</td>\n", - " <td>4.419961e+11</td>\n", - " <td>3.818057e+11</td>\n", - " <td>3.940528e+11</td>\n", - " <td>4.168360e+11</td>\n", - " <td>4.557366e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>634.439955</td>\n", - " </tr>\n", - " <tr>\n", - " <th>203</th>\n", - " <td>Saudi Arabia</td>\n", - " <td>SAU</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>...</td>\n", - " <td>7.359748e+11</td>\n", - " <td>7.466471e+11</td>\n", - " <td>7.563503e+11</td>\n", - " <td>6.542699e+11</td>\n", - " <td>6.449355e+11</td>\n", - " <td>6.885861e+11</td>\n", - " <td>7.824835e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>874.867536</td>\n", - " </tr>\n", - " <tr>\n", - " <th>188</th>\n", - " <td>Poland</td>\n", - " <td>POL</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>...</td>\n", - " <td>5.003608e+11</td>\n", - " <td>5.242343e+11</td>\n", - " <td>5.453891e+11</td>\n", - " <td>4.775774e+11</td>\n", - " <td>4.720280e+11</td>\n", - " <td>5.263710e+11</td>\n", - " <td>5.857829e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " </tr>\n", - " <tr>\n", - " <th>94</th>\n", - " <td>Hong Kong SAR, China</td>\n", - " <td>HKG</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.320797e+09</td>\n", - " <td>1.383682e+09</td>\n", - " <td>1.612346e+09</td>\n", - " <td>1.935298e+09</td>\n", - " <td>2.206466e+09</td>\n", - " <td>2.435079e+09</td>\n", - " <td>...</td>\n", - " <td>2.626294e+11</td>\n", - " <td>2.756969e+11</td>\n", - " <td>2.914594e+11</td>\n", - " <td>3.093836e+11</td>\n", - " <td>3.208607e+11</td>\n", - " <td>3.416481e+11</td>\n", - " <td>3.629925e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1881.940436</td>\n", - " </tr>\n", - " <tr>\n", - " <th>175</th>\n", - " <td>Norway</td>\n", - " <td>NOR</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>5.163272e+09</td>\n", - " <td>5.632461e+09</td>\n", - " <td>6.066977e+09</td>\n", - " <td>6.510240e+09</td>\n", - " <td>7.159203e+09</td>\n", - " <td>8.058681e+09</td>\n", - " <td>...</td>\n", - " <td>5.102291e+11</td>\n", - " <td>5.235021e+11</td>\n", - " <td>4.993385e+11</td>\n", - " <td>3.866631e+11</td>\n", - " <td>3.713448e+11</td>\n", - " <td>3.994889e+11</td>\n", - " <td>4.347509e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>834.484206</td>\n", - " </tr>\n", - " <tr>\n", - " <th>104</th>\n", - " <td>Indonesia</td>\n", - " <td>IDN</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>...</td>\n", - " <td>9.178699e+11</td>\n", - " <td>9.125241e+11</td>\n", - " <td>8.908148e+11</td>\n", - " <td>8.608542e+11</td>\n", - " <td>9.318774e+11</td>\n", - " <td>1.015423e+12</td>\n", - " <td>1.042173e+12</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1925.378945</td>\n", - " </tr>\n", - " <tr>\n", - " <th>56</th>\n", - " <td>Denmark</td>\n", - " <td>DNK</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>6.248947e+09</td>\n", - " <td>6.933842e+09</td>\n", - " <td>7.812968e+09</td>\n", - " <td>8.316692e+09</td>\n", - " <td>9.506679e+09</td>\n", - " <td>1.067890e+10</td>\n", - " <td>...</td>\n", - " <td>3.271489e+11</td>\n", - " <td>3.435844e+11</td>\n", - " <td>3.529936e+11</td>\n", - " <td>3.026731e+11</td>\n", - " <td>3.119881e+11</td>\n", - " <td>3.298656e+11</td>\n", - " <td>3.520584e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>483.236102</td>\n", - " </tr>\n", - " <tr>\n", - " <th>261</th>\n", - " <td>South Africa</td>\n", - " <td>ZAF</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>7.575397e+09</td>\n", - " <td>7.972997e+09</td>\n", - " <td>8.497997e+09</td>\n", - " <td>9.423396e+09</td>\n", - " <td>1.037400e+10</td>\n", - " <td>1.133440e+10</td>\n", - " <td>...</td>\n", - " <td>3.963294e+11</td>\n", - " <td>3.666449e+11</td>\n", - " <td>3.506376e+11</td>\n", - " <td>3.174156e+11</td>\n", - " <td>2.963409e+11</td>\n", - " <td>3.492681e+11</td>\n", - " <td>3.682882e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>687.960071</td>\n", - " </tr>\n", - " <tr>\n", - " <th>113</th>\n", - " <td>Israel</td>\n", - " <td>ISR</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>2.598500e+09</td>\n", - " <td>3.138500e+09</td>\n", - " <td>2.510000e+09</td>\n", - " <td>2.992333e+09</td>\n", - " <td>3.405333e+09</td>\n", - " <td>3.663333e+09</td>\n", - " <td>...</td>\n", - " <td>2.574350e+11</td>\n", - " <td>2.929170e+11</td>\n", - " <td>3.100079e+11</td>\n", - " <td>3.004708e+11</td>\n", - " <td>3.193779e+11</td>\n", - " <td>3.532684e+11</td>\n", - " <td>3.696904e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>2098.098544</td>\n", - " </tr>\n", - " <tr>\n", - " <th>87</th>\n", - " <td>Greece</td>\n", - " <td>GRC</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>4.446528e+09</td>\n", - " <td>5.016049e+09</td>\n", - " <td>5.327574e+09</td>\n", - " <td>5.949478e+09</td>\n", - " <td>6.680298e+09</td>\n", - " <td>7.600579e+09</td>\n", - " <td>...</td>\n", - " <td>2.456707e+11</td>\n", - " <td>2.398620e+11</td>\n", - " <td>2.370296e+11</td>\n", - " <td>1.965914e+11</td>\n", - " <td>1.952224e+11</td>\n", - " <td>2.030856e+11</td>\n", - " <td>2.180318e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>392.502471</td>\n", - " </tr>\n", - " <tr>\n", - " <th>231</th>\n", - " <td>Thailand</td>\n", - " <td>THA</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>2.760747e+09</td>\n", - " <td>3.034044e+09</td>\n", - " <td>3.308913e+09</td>\n", - " <td>3.540403e+09</td>\n", - " <td>3.889130e+09</td>\n", - " <td>4.388938e+09</td>\n", - " <td>...</td>\n", - " <td>3.975581e+11</td>\n", - " <td>4.203333e+11</td>\n", - " <td>4.073394e+11</td>\n", - " <td>4.012960e+11</td>\n", - " <td>4.123528e+11</td>\n", - " <td>4.552755e+11</td>\n", - " <td>5.049928e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>2003.560625</td>\n", - " </tr>\n", - " <tr>\n", - " <th>73</th>\n", - " <td>Finland</td>\n", - " <td>FIN</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>5.224102e+09</td>\n", - " <td>5.921659e+09</td>\n", - " <td>6.340581e+09</td>\n", - " <td>6.885920e+09</td>\n", - " <td>7.766655e+09</td>\n", - " <td>8.589340e+09</td>\n", - " <td>...</td>\n", - " <td>2.567065e+11</td>\n", - " <td>2.699801e+11</td>\n", - " <td>2.726093e+11</td>\n", - " <td>2.328508e+11</td>\n", - " <td>2.390095e+11</td>\n", - " <td>2.523311e+11</td>\n", - " <td>2.739610e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>655.065126</td>\n", - " </tr>\n", - " <tr>\n", - " <th>192</th>\n", - " <td>Portugal</td>\n", - " <td>PRT</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>3.193200e+09</td>\n", - " <td>3.417517e+09</td>\n", - " <td>3.668222e+09</td>\n", - " <td>3.905734e+09</td>\n", - " <td>4.235608e+09</td>\n", - " <td>4.687464e+09</td>\n", - " <td>...</td>\n", - " <td>2.163682e+11</td>\n", - " <td>2.260735e+11</td>\n", - " <td>2.296298e+11</td>\n", - " <td>1.994203e+11</td>\n", - " <td>2.062757e+11</td>\n", - " <td>2.193081e+11</td>\n", - " <td>2.379789e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>913.110689</td>\n", - " </tr>\n", - " <tr>\n", - " <th>252</th>\n", - " <td>Venezuela, RB</td>\n", - " <td>VEN</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>7.779091e+09</td>\n", - " <td>8.189091e+09</td>\n", - " <td>8.946970e+09</td>\n", - " <td>9.753333e+09</td>\n", - " <td>8.099318e+09</td>\n", - " <td>8.427778e+09</td>\n", - " <td>...</td>\n", - " <td>3.812862e+11</td>\n", - " <td>3.710054e+11</td>\n", - " <td>4.823593e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " </tr>\n", - " <tr>\n", - " <th>110</th>\n", - " <td>Iran, Islamic Rep.</td>\n", - " <td>IRN</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>4.199134e+09</td>\n", - " <td>4.426949e+09</td>\n", - " <td>4.693566e+09</td>\n", - " <td>4.928628e+09</td>\n", - " <td>5.379846e+09</td>\n", - " <td>6.197320e+09</td>\n", - " <td>...</td>\n", - " <td>5.988534e+11</td>\n", - " <td>4.674149e+11</td>\n", - " <td>4.344746e+11</td>\n", - " <td>3.858745e+11</td>\n", - " <td>4.189767e+11</td>\n", - " <td>4.540128e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " </tr>\n", - " <tr>\n", - " <th>6</th>\n", - " <td>United Arab Emirates</td>\n", - " <td>ARE</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>...</td>\n", - " <td>3.745906e+11</td>\n", - " <td>3.901076e+11</td>\n", - " <td>4.031371e+11</td>\n", - " <td>3.581351e+11</td>\n", - " <td>3.570451e+11</td>\n", - " <td>3.825751e+11</td>\n", - " <td>4.141789e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1642.016435</td>\n", - " </tr>\n", - " <tr>\n", - " <th>43</th>\n", - " <td>Colombia</td>\n", - " <td>COL</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>4.031153e+09</td>\n", - " <td>4.540448e+09</td>\n", - " <td>4.955544e+09</td>\n", - " <td>4.836167e+09</td>\n", - " <td>5.973367e+09</td>\n", - " <td>5.760762e+09</td>\n", - " <td>...</td>\n", - " <td>3.705744e+11</td>\n", - " <td>3.818666e+11</td>\n", - " <td>3.811121e+11</td>\n", - " <td>2.934817e+11</td>\n", - " <td>2.828250e+11</td>\n", - " <td>3.117899e+11</td>\n", - " <td>3.302279e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1319.509947</td>\n", - " </tr>\n", - " <tr>\n", - " <th>109</th>\n", - " <td>Ireland</td>\n", - " <td>IRL</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>1.939330e+09</td>\n", - " <td>2.088012e+09</td>\n", - " <td>2.260350e+09</td>\n", - " <td>2.430844e+09</td>\n", - " <td>2.766609e+09</td>\n", - " <td>2.945704e+09</td>\n", - " <td>...</td>\n", - " <td>2.249995e+11</td>\n", - " <td>2.385435e+11</td>\n", - " <td>2.584719e+11</td>\n", - " <td>2.914998e+11</td>\n", - " <td>3.005233e+11</td>\n", - " <td>3.348340e+11</td>\n", - " <td>3.824875e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>2508.069947</td>\n", - " </tr>\n", - " <tr>\n", - " <th>65</th>\n", - " <td>Egypt, Arab Rep.</td>\n", - " <td>EGY</td>\n", - " <td>GDP (current US$)</td>\n", - " <td>NY.GDP.MKTP.CD</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>4.948668e+09</td>\n", - " <td>...</td>\n", - " <td>2.793728e+11</td>\n", - " <td>2.885862e+11</td>\n", - " <td>3.055297e+11</td>\n", - " <td>3.326980e+11</td>\n", - " <td>3.329278e+11</td>\n", - " <td>2.353691e+11</td>\n", - " <td>2.508955e+11</td>\n", - " <td>NaN</td>\n", - " <td>NaN</td>\n", - " <td>1593.900098</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "<p>40 rows × 66 columns</p>\n", - "</div>" - ], - "text/plain": [ - " Country Name Country Code Indicator Name Indicator Code \\\n", - "249 United States USA GDP (current US$) NY.GDP.MKTP.CD \n", - "117 Japan JPN GDP (current US$) NY.GDP.MKTP.CD \n", - "53 Germany DEU GDP (current US$) NY.GDP.MKTP.CD \n", - "79 United Kingdom GBR GDP (current US$) NY.GDP.MKTP.CD \n", - "75 France FRA GDP (current US$) NY.GDP.MKTP.CD \n", - "38 China CHN GDP (current US$) NY.GDP.MKTP.CD \n", - "114 Italy ITA GDP (current US$) NY.GDP.MKTP.CD \n", - "33 Canada CAN GDP (current US$) NY.GDP.MKTP.CD \n", - "152 Mexico MEX GDP (current US$) NY.GDP.MKTP.CD \n", - "27 Brazil BRA GDP (current US$) NY.GDP.MKTP.CD \n", - "68 Spain ESP GDP (current US$) NY.GDP.MKTP.CD \n", - "124 Korea, Rep. KOR GDP (current US$) NY.GDP.MKTP.CD \n", - "107 India IND GDP (current US$) NY.GDP.MKTP.CD \n", - "174 Netherlands NLD GDP (current US$) NY.GDP.MKTP.CD \n", - "11 Australia AUS GDP (current US$) NY.GDP.MKTP.CD \n", - "7 Argentina ARG GDP (current US$) NY.GDP.MKTP.CD \n", - "242 Turkey TUR GDP (current US$) NY.GDP.MKTP.CD \n", - "35 Switzerland CHE GDP (current US$) NY.GDP.MKTP.CD \n", - "221 Sweden SWE GDP (current US$) NY.GDP.MKTP.CD \n", - "200 Russian Federation RUS GDP (current US$) NY.GDP.MKTP.CD \n", - "15 Belgium BEL GDP (current US$) NY.GDP.MKTP.CD \n", - "12 Austria AUT GDP (current US$) NY.GDP.MKTP.CD \n", - "203 Saudi Arabia SAU GDP (current US$) NY.GDP.MKTP.CD \n", - "188 Poland POL GDP (current US$) NY.GDP.MKTP.CD \n", - "94 Hong Kong SAR, China HKG GDP (current US$) NY.GDP.MKTP.CD \n", - "175 Norway NOR GDP (current US$) NY.GDP.MKTP.CD \n", - "104 Indonesia IDN GDP (current US$) NY.GDP.MKTP.CD \n", - "56 Denmark DNK GDP (current US$) NY.GDP.MKTP.CD \n", - "261 South Africa ZAF GDP (current US$) NY.GDP.MKTP.CD \n", - "113 Israel ISR GDP (current US$) NY.GDP.MKTP.CD \n", - "87 Greece GRC GDP (current US$) NY.GDP.MKTP.CD \n", - "231 Thailand THA GDP (current US$) NY.GDP.MKTP.CD \n", - "73 Finland FIN GDP (current US$) NY.GDP.MKTP.CD \n", - "192 Portugal PRT GDP (current US$) NY.GDP.MKTP.CD \n", - "252 Venezuela, RB VEN GDP (current US$) NY.GDP.MKTP.CD \n", - "110 Iran, Islamic Rep. IRN GDP (current US$) NY.GDP.MKTP.CD \n", - "6 United Arab Emirates ARE GDP (current US$) NY.GDP.MKTP.CD \n", - "43 Colombia COL GDP (current US$) NY.GDP.MKTP.CD \n", - "109 Ireland IRL GDP (current US$) NY.GDP.MKTP.CD \n", - "65 Egypt, Arab Rep. EGY GDP (current US$) NY.GDP.MKTP.CD \n", - "\n", - " 1960 1961 1962 1963 1964 \\\n", - "249 5.433000e+11 5.633000e+11 6.051000e+11 6.386000e+11 6.858000e+11 \n", - "117 4.430734e+10 5.350862e+10 6.072302e+10 6.949813e+10 8.174901e+10 \n", - "53 NaN NaN NaN NaN NaN \n", - "79 7.232805e+10 7.669436e+10 8.060194e+10 8.544377e+10 9.338760e+10 \n", - "75 6.265147e+10 6.834674e+10 7.631378e+10 8.555111e+10 9.490659e+10 \n", - "38 5.971647e+10 5.005687e+10 4.720936e+10 5.070680e+10 5.970834e+10 \n", - "114 4.038529e+10 4.484276e+10 5.038389e+10 5.771074e+10 6.317542e+10 \n", - "33 NaN 4.155599e+10 4.286809e+10 4.571315e+10 5.012664e+10 \n", - "152 1.304000e+10 1.416000e+10 1.520000e+10 1.696000e+10 2.008000e+10 \n", - "27 1.516557e+10 1.523685e+10 1.992629e+10 2.302148e+10 2.121189e+10 \n", - "68 1.207213e+10 1.383430e+10 1.613855e+10 1.907491e+10 2.134384e+10 \n", - "124 3.957240e+09 2.417638e+09 2.813857e+09 3.988477e+09 3.458565e+09 \n", - "107 3.702988e+10 3.923244e+10 4.216148e+10 4.842192e+10 5.648029e+10 \n", - "174 1.227673e+10 1.349383e+10 1.464706e+10 1.589124e+10 1.869938e+10 \n", - "11 1.857767e+10 1.965394e+10 1.989249e+10 2.150745e+10 2.376414e+10 \n", - "7 NaN NaN 2.445060e+10 1.827212e+10 2.560525e+10 \n", - "242 1.399507e+10 7.988889e+09 8.922222e+09 1.035556e+10 1.117778e+10 \n", - "35 9.522747e+09 1.071271e+10 1.187998e+10 1.306364e+10 1.448056e+10 \n", - "221 1.484287e+10 1.614716e+10 1.751148e+10 1.895413e+10 2.113724e+10 \n", - "200 NaN NaN NaN NaN NaN \n", - "15 1.165872e+10 1.240015e+10 1.326402e+10 1.426002e+10 1.596011e+10 \n", - "12 6.592694e+09 7.311750e+09 7.756110e+09 8.374175e+09 9.169984e+09 \n", - "203 NaN NaN NaN NaN NaN \n", - "188 NaN NaN NaN NaN NaN \n", - "94 1.320797e+09 1.383682e+09 1.612346e+09 1.935298e+09 2.206466e+09 \n", - "175 5.163272e+09 5.632461e+09 6.066977e+09 6.510240e+09 7.159203e+09 \n", - "104 NaN NaN NaN NaN NaN \n", - "56 6.248947e+09 6.933842e+09 7.812968e+09 8.316692e+09 9.506679e+09 \n", - "261 7.575397e+09 7.972997e+09 8.497997e+09 9.423396e+09 1.037400e+10 \n", - "113 2.598500e+09 3.138500e+09 2.510000e+09 2.992333e+09 3.405333e+09 \n", - "87 4.446528e+09 5.016049e+09 5.327574e+09 5.949478e+09 6.680298e+09 \n", - "231 2.760747e+09 3.034044e+09 3.308913e+09 3.540403e+09 3.889130e+09 \n", - "73 5.224102e+09 5.921659e+09 6.340581e+09 6.885920e+09 7.766655e+09 \n", - "192 3.193200e+09 3.417517e+09 3.668222e+09 3.905734e+09 4.235608e+09 \n", - "252 7.779091e+09 8.189091e+09 8.946970e+09 9.753333e+09 8.099318e+09 \n", - "110 4.199134e+09 4.426949e+09 4.693566e+09 4.928628e+09 5.379846e+09 \n", - "6 NaN NaN NaN NaN NaN \n", - "43 4.031153e+09 4.540448e+09 4.955544e+09 4.836167e+09 5.973367e+09 \n", - "109 1.939330e+09 2.088012e+09 2.260350e+09 2.430844e+09 2.766609e+09 \n", - "65 NaN NaN NaN NaN NaN \n", - "\n", - " 1965 ... 2012 2013 2014 \\\n", - "249 7.437000e+11 ... 1.619701e+13 1.678485e+13 1.752175e+13 \n", - "117 9.095028e+10 ... 6.203213e+12 5.155717e+12 4.850414e+12 \n", - "53 NaN ... 3.543984e+12 3.752514e+12 3.898727e+12 \n", - "79 1.005958e+11 ... 2.676605e+12 2.753565e+12 3.034729e+12 \n", - "75 1.021606e+11 ... 2.683825e+12 2.811078e+12 2.852166e+12 \n", - "38 7.043627e+10 ... 8.532231e+12 9.570406e+12 1.043853e+13 \n", - "114 6.797815e+10 ... 2.072823e+12 2.130491e+12 2.151733e+12 \n", - "33 5.534224e+10 ... 1.823967e+12 1.842018e+12 1.801480e+12 \n", - "152 2.184000e+10 ... 1.201090e+12 1.274443e+12 1.314564e+12 \n", - "27 2.179004e+10 ... 2.465189e+12 2.472806e+12 2.455994e+12 \n", - "68 2.475696e+10 ... 1.336019e+12 1.361854e+12 1.376911e+12 \n", - "124 3.120495e+09 ... 1.222807e+12 1.305605e+12 1.411334e+12 \n", - "107 5.955486e+10 ... 1.827638e+12 1.856722e+12 2.039127e+12 \n", - "174 2.100059e+10 ... 8.389713e+11 8.769235e+11 8.909813e+11 \n", - "11 2.593795e+10 ... 1.546152e+12 1.576184e+12 1.467484e+12 \n", - "7 2.834471e+10 ... 5.459824e+11 5.520251e+11 5.263197e+11 \n", - "242 1.196667e+10 ... 8.739822e+11 9.505794e+11 9.341859e+11 \n", - "35 1.534674e+10 ... 6.680436e+11 6.885042e+11 7.091826e+11 \n", - "221 2.326032e+10 ... 5.444815e+11 5.793607e+11 5.744131e+11 \n", - "200 NaN ... 2.210257e+12 2.297128e+12 2.059984e+12 \n", - "15 1.737146e+10 ... 4.978842e+11 5.209255e+11 5.308084e+11 \n", - "12 9.994071e+09 ... 4.094252e+11 4.300687e+11 4.419961e+11 \n", - "203 NaN ... 7.359748e+11 7.466471e+11 7.563503e+11 \n", - "188 NaN ... 5.003608e+11 5.242343e+11 5.453891e+11 \n", - "94 2.435079e+09 ... 2.626294e+11 2.756969e+11 2.914594e+11 \n", - "175 8.058681e+09 ... 5.102291e+11 5.235021e+11 4.993385e+11 \n", - "104 NaN ... 9.178699e+11 9.125241e+11 8.908148e+11 \n", - "56 1.067890e+10 ... 3.271489e+11 3.435844e+11 3.529936e+11 \n", - "261 1.133440e+10 ... 3.963294e+11 3.666449e+11 3.506376e+11 \n", - "113 3.663333e+09 ... 2.574350e+11 2.929170e+11 3.100079e+11 \n", - "87 7.600579e+09 ... 2.456707e+11 2.398620e+11 2.370296e+11 \n", - "231 4.388938e+09 ... 3.975581e+11 4.203333e+11 4.073394e+11 \n", - "73 8.589340e+09 ... 2.567065e+11 2.699801e+11 2.726093e+11 \n", - "192 4.687464e+09 ... 2.163682e+11 2.260735e+11 2.296298e+11 \n", - "252 8.427778e+09 ... 3.812862e+11 3.710054e+11 4.823593e+11 \n", - "110 6.197320e+09 ... 5.988534e+11 4.674149e+11 4.344746e+11 \n", - "6 NaN ... 3.745906e+11 3.901076e+11 4.031371e+11 \n", - "43 5.760762e+09 ... 3.705744e+11 3.818666e+11 3.811121e+11 \n", - "109 2.945704e+09 ... 2.249995e+11 2.385435e+11 2.584719e+11 \n", - "65 4.948668e+09 ... 2.793728e+11 2.885862e+11 3.055297e+11 \n", - "\n", - " 2015 2016 2017 2018 2019 \\\n", - "249 1.821930e+13 1.870719e+13 1.948539e+13 2.049410e+13 NaN \n", - "117 4.389476e+12 4.926667e+12 4.859951e+12 4.970916e+12 NaN \n", - "53 3.381389e+12 3.495163e+12 3.693204e+12 3.996759e+12 NaN \n", - "79 2.896421e+12 2.659239e+12 2.637866e+12 2.825208e+12 NaN \n", - "75 2.438208e+12 2.471286e+12 2.586285e+12 2.777535e+12 NaN \n", - "38 1.101554e+13 1.113795e+13 1.214349e+13 1.360815e+13 NaN \n", - "114 1.832273e+12 1.869202e+12 1.946570e+12 2.073902e+12 NaN \n", - "33 1.552900e+12 1.526706e+12 1.646867e+12 1.712510e+12 NaN \n", - "152 1.170565e+12 1.077828e+12 1.158071e+12 1.223809e+12 NaN \n", - "27 1.802214e+12 1.796275e+12 2.053595e+12 1.868626e+12 NaN \n", - "68 1.199084e+12 1.237499e+12 1.314314e+12 1.426189e+12 NaN \n", - "124 1.382764e+12 1.414804e+12 1.530751e+12 1.619424e+12 NaN \n", - "107 2.103588e+12 2.290432e+12 2.652551e+12 2.726323e+12 NaN \n", - "174 7.652649e+11 7.835282e+11 8.318099e+11 9.136585e+11 NaN \n", - "11 1.351520e+12 1.210028e+12 1.330803e+12 1.432195e+12 NaN \n", - "7 5.947493e+11 5.575314e+11 6.426959e+11 5.184751e+11 NaN \n", - "242 8.597969e+11 8.637216e+11 8.515492e+11 7.665091e+11 NaN \n", - "35 6.798323e+11 6.701811e+11 6.789654e+11 7.055013e+11 NaN \n", - "221 4.981176e+11 5.122052e+11 5.356074e+11 5.510317e+11 NaN \n", - "200 1.363594e+12 1.282724e+12 1.578624e+12 1.657554e+12 NaN \n", - "15 4.559403e+11 4.696772e+11 4.949017e+11 5.317669e+11 NaN \n", - "12 3.818057e+11 3.940528e+11 4.168360e+11 4.557366e+11 NaN \n", - "203 6.542699e+11 6.449355e+11 6.885861e+11 7.824835e+11 NaN \n", - "188 4.775774e+11 4.720280e+11 5.263710e+11 5.857829e+11 NaN \n", - "94 3.093836e+11 3.208607e+11 3.416481e+11 3.629925e+11 NaN \n", - "175 3.866631e+11 3.713448e+11 3.994889e+11 4.347509e+11 NaN \n", - "104 8.608542e+11 9.318774e+11 1.015423e+12 1.042173e+12 NaN \n", - "56 3.026731e+11 3.119881e+11 3.298656e+11 3.520584e+11 NaN \n", - "261 3.174156e+11 2.963409e+11 3.492681e+11 3.682882e+11 NaN \n", - "113 3.004708e+11 3.193779e+11 3.532684e+11 3.696904e+11 NaN \n", - "87 1.965914e+11 1.952224e+11 2.030856e+11 2.180318e+11 NaN \n", - "231 4.012960e+11 4.123528e+11 4.552755e+11 5.049928e+11 NaN \n", - "73 2.328508e+11 2.390095e+11 2.523311e+11 2.739610e+11 NaN \n", - "192 1.994203e+11 2.062757e+11 2.193081e+11 2.379789e+11 NaN \n", - "252 NaN NaN NaN NaN NaN \n", - "110 3.858745e+11 4.189767e+11 4.540128e+11 NaN NaN \n", - "6 3.581351e+11 3.570451e+11 3.825751e+11 4.141789e+11 NaN \n", - "43 2.934817e+11 2.828250e+11 3.117899e+11 3.302279e+11 NaN \n", - "109 2.914998e+11 3.005233e+11 3.348340e+11 3.824875e+11 NaN \n", - "65 3.326980e+11 3.329278e+11 2.353691e+11 2.508955e+11 NaN \n", - "\n", - " Unnamed: 64 increaseRate2013-2018 \n", - "249 NaN 771.496373 \n", - "117 NaN 390.415929 \n", - "53 NaN 441.809779 \n", - "79 NaN 741.128517 \n", - "75 NaN 448.153190 \n", - "38 NaN 8999.962122 \n", - "114 NaN 560.438213 \n", - "33 NaN 683.281146 \n", - "152 NaN 1093.959888 \n", - "27 NaN 830.586548 \n", - "68 NaN 790.458368 \n", - "124 NaN 3032.310031 \n", - "107 NaN 1885.664011 \n", - "174 NaN 486.205729 \n", - "11 NaN 1110.240417 \n", - "7 NaN 792.647234 \n", - "242 NaN 1076.583456 \n", - "35 NaN NaN \n", - "221 NaN 434.541359 \n", - "200 NaN NaN \n", - "15 NaN 422.423521 \n", - "12 NaN 634.439955 \n", - "203 NaN 874.867536 \n", - "188 NaN NaN \n", - "94 NaN 1881.940436 \n", - "175 NaN 834.484206 \n", - "104 NaN 1925.378945 \n", - "56 NaN 483.236102 \n", - "261 NaN 687.960071 \n", - "113 NaN 2098.098544 \n", - "87 NaN 392.502471 \n", - "231 NaN 2003.560625 \n", - "73 NaN 655.065126 \n", - "192 NaN 913.110689 \n", - "252 NaN NaN \n", - "110 NaN NaN \n", - "6 NaN 1642.016435 \n", - "43 NaN 1319.509947 \n", - "109 NaN 2508.069947 \n", - "65 NaN 1593.900098 \n", - "\n", - "[40 rows x 66 columns]" - ] - }, - "execution_count": 232, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "pd.set_option('display.max_rows',40)\n", - "df.iloc[0:40,]" - ] - }, - { - "cell_type": "code", - "execution_count": 253, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<matplotlib.axes._subplots.AxesSubplot at 0x1aa22e7c18>" - ] - }, - "execution_count": 253, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABvMAAAHeCAYAAACmBvcgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde5iWdZ0/8PcMc+LgCfMYqIAnpCWkFF1XhWp3W8xjK5nuVOpq4GKGWkKIy0aeAlfxkIqiKKIpZKVhXZplilcSa5qWYxxcTJZwlChFZQ7M8/vDX+OSIrLBPLfD6/XX89zPfXjfz8z1/ed9fe6nolQqlQIAAAAAAAAUTmW5AwAAAAAAAADvTJkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFBV5Q7AW375y1+ma9eu5Y4BsEk1NTWltra23DEANilrG9AZWduAzsjaBnRG1rbOq6mpKYMGDXrbdmVegVRUVKR///7ljgGwSTU0NFjbgE7H2gZ0RtY2oDOytgGdkbWt82poaHjH7R6zCQAAAAAAAAWlzAMAAAAAAICCqiiVSqVyh+BNv/nNbzJgwIByxwAAAAAAANhoTS1rU1vdpdwx3rfW9whVv5lXIJWVlfnIV24tdwwAAAAAAICN9vjkz5U7QqfkMZsAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACqqsZd78+fMzZsyYdbZNmTIld99993qPmTZtWp566qk0NTVl9uzZ7/laY8aMyfz589fZtmbNmowdOzannHJKTj311Jx11llZtWpVkuSBBx7Iiy++uN7z/fGPf8y99977nq8PAAAAAAAAG+t9N5l3+umnZ+DAgXnppZc2qsx7J9/5znfygQ98IDfddFOmT5+e/fffP9dcc02S5NZbb83q1avXe+xvf/vb/OQnP/mrrg8AAAAAAADvpqrcAdZn/vz5ueGGG1JdXZ1ly5Zl+PDhGTVqVMaOHZvhw4fn/vvvz+LFi3P11Vfn85//fMaPH98+VXf++ednn332yaxZszJ79uzssMMOWbly5duu8cEPfjBz5szJ4MGDc+CBB6a+vj6lUikPPfRQGhoact555+X222/PVVddlV//+td57bXX0q9fv1x88cW57rrr8uyzz+bOO+/MYYcdlgkTJqSpqSm1tbWZNGlSevbsmbPOOiurV6/OmjVr8pWvfCVDhgzp6K8RAAAAAACA97FClnkVFRVJkuXLl+eee+5Jc3NzDj300IwaNap9n5EjR2bhwoUZPXp0Jk+enIMOOignnnhili5dmnHjxmXatGm59dZbc++996aioiLHHXfc264zdOjQNDc3Z86cORk3blz23nvvnH/++Rk6dGj69++fiRMnprm5OVtvvXVuvvnmtLW15YgjjsiLL76YkSNH5tvf/nY+85nP5Mtf/nLq6+tz+OGH5+c//3mmTJmSkSNH5uWXX86MGTOycuXKLF26tKO+PgAAAAAAADqJspZ5dXV1aW5uXmfb66+/ntra2iTJ3nvvnaqqqlRVVaWurm6951m4cGEee+yx/PCHP0ySvPLKK3nuueey5557pqamJkkycODAtx33xBNP5OCDD84//MM/ZO3atfn+97+fcePGrfObfbW1tfnDH/6Qs88+O926dcvrr7+elpaWt13/+uuvz4033phSqZTq6urstddeOemkk3L22WentbU19fX1/7cvCQAAAAAAgC1WWcu8fv36paGhIY2Njdlxxx3T1NSUBQsW5POf/3xWrFjRPqH3TiorK9PW1pYk6du3b4466qgceeSRWblyZWbPnp3evXtn8eLFWbNmTaqrq9PQ0JCjjjpqnXPMnTs33bt3z5gxY9KlS5fss88+7eVfRUVFSqVSHn744fz+97/PFVdckT/84Q954IEHUiqV3nb9U045JYMHD86SJUuyYMGC/Pa3v81rr72WadOmpbGxMSeccEKGDRu2mb5JAAAAAAAAOqOylnk9evTI2LFj88UvfjF1dXVpaWlJfX19dt9996xYseJdj91+++3T0tKSyZMnZ+TIkRk/fnzuuuuurF69OqNHj27/zboTTjghPXv2TNeuXd92ji9/+cuZNGlSjj766HTt2jXdunXLhRdemCTZf//989WvfjXXXnttvvWtb2XEiBGpqalJ796909jYmN122y0LFy7MjBkzct5552XixIlpamrKmjVrMn78+Oyxxx655ppr8r3vfS/V1dX50pe+tFm+QwAAAAAAADqvilKpVCp3CN7U0NCQf7lpQbljAAAAAAAAbLTHJ3+u3BHe1xoaGtK/f/+3ba8sQxYAAAAAAADgPVDmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACioqnIH4C1tbW15fPLnyh0DAAAAAABgozW1rE1tdZdyx+h0TOYVSHNzc7kjAGxyDQ0N5Y4AsMlZ24DOyNoGdEbWNqAzKvLapsjbPJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCUuYBAAAAAABAQSnzCqS2pqbcEQA2uf79+5c7AsAmZ23jvSi1NpU7AgAAAJ1AVbkD8JaKysr87ut/U+4YAADAJrDbBU+XOwIAAACdgMk8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACkqZBwAAAAAAAAWlzPsL9fX1WbJkSbljAAAAAAAAgDIPAAAAAAAAiqqq3AGKaNWqVRk5cmSampryxz/+Mf/2b/+WT3ziExk+fHg++tGPZtGiRdlmm23yn//5n2lra8v48ePz6quvZtWqVTn++ONz4oknpr6+Pvvuu28WLVqU1atXZ+rUqfngBz9Y7lsDAAAAAADgfcRk3jt49tlnc/LJJ+fmm2/OhAkTMmvWrCTJmjVrcuSRR+aOO+5I3759c+edd+b555/PEUcckZtuuinXXXddZsyY0X6egQMHZsaMGTnkkEMyd+7cMt0NAAAAAAAA71cm85K89tprqampSXV1dZLkox/9aKZNm5Y5c+akoqIira2tSZKqqqoccMABSZLBgwfn4YcfzvDhw3PLLbfk/vvvT48ePdr3TZL99tsvSbLzzjvn5Zdf7uC7AgAAAAAA4P3OZF6SsWPH5vHHH09bW1tWrlyZiy66KEcffXQmT56cIUOGpFQqJUlaW1vz7LPPJkkef/zx7LnnnrnpppsyaNCgTJkyJZ/85Cfb9wUAAAAAAIC/lsm8JCeffHK+8Y1vpLa2Nscee2x22WWXXHjhhbn++uuzyy67ZNWqVe373nDDDVm+fHl23XXXjBkzJr/85S8zceLE3Hvvvdl2223TpUuXNDc3l/FuAAAAAAAA6CwqSkbJ3rOPfexj+eEPf5ja2trNcv6GhoZ0nz1is5wbAADoWLtd8HS5I8BGaWhoSP/+/csdA2CTsrYBnZG1rfNa39/WYzYBAAAAAACgoDxmcyP85Cc/KXcEAAAAAAAAtiAm8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACioqnIH4C2ltrbsdsHT5Y4BAABsAqXWplRU1ZY7BgAAAO9zJvMKpKm5udwRADa5hoaGckcA2OSsbbwXijwAAAA2BWUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkFUlNTU+4IAButqbWp3BEAAAAAADqtqnIH4C2VlZU55KpDyh0DYKM8euaj5Y4AAAAAANBpmcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFBV5Q6wqb3wwguZPHlyVqxYkbq6utTV1eUrX/lK9tprr3JHAwAAAAAAgI3Sqcq8N954I6NGjcqkSZOy//77J0meeuqpfP3rX8/MmTPLnA4AAAAAAAA2Tqcq837605/moIMOai/ykmTgwIG59dZb8/vf/z4TJkxIU1NTamtrM2nSpKxduzajRo3Ktttum8MOOywPP/xw9tlnnyxatCjdunXLRz/60cybNy+vvPJKbrrppnTp0iXjx4/Pq6++mlWrVuX444/PiSeemPr6+uy7775ZtGhRVq9enalTp2bevHlZunRpzjvvvKxduzbHHHNMvvOd76SmpqaM3xAAAAAAAADvJ53qN/OWLVuW3Xbbrf39qFGjUl9fn09+8pMZO3Zs6uvrM3PmzJx66qmZMmVKkuSll17K9OnTc9pppyV5s/y75ZZb0tzcnLq6utx8883Zc889s2DBgjz//PM54ogjctNNN+W6667LjBkz2q81cODAzJgxI4ccckjmzp2bI444Ig8++GDWrl2bRx55JEOGDFHkAQAAAAAAsFE61WTezjvvnF//+tft76+99tokyYgRI/Lkk0/m+uuvz4033phSqZTq6uokSa9evdYp2QYMGJAk2XrrrbPnnnu2v25qasoHPvCB3HLLLbn//vvTo0ePtLa2th+33377tWd4+eWX06NHjxxwwAGZN29e7r777pxxxhmb9+YBAAAAAADodDpVmffxj388N9xwQ5588skMGjQoSfL8889nxYoVGThwYMaMGZPBgwdnyZIlWbBgQZKksvK9DyfedNNNGTRoUE488cQ89thj+dnPfvau+48YMSI33HBDVq1alX333ff/fmMAAAAAAABskTpVmde9e/dce+21ueyyyzJlypS0tramqqoqkyZNSt++fTNx4sQ0NTVlzZo1GT9+/Eaff9iwYZk4cWLuvffebLvttunSpUuam5vXu/+HP/zhPP/88znppJP+mtsCAAAAAABgC1VRKpVK5Q7RWbW1teWzn/1spk+fnh49emxw/4aGhvzrj/+1A5IBbDqPnvnou37e0NCQ/v37d1AagI5hbQM6I2sb0BlZ24DOyNrWea3vb/venzHJRnnhhRdy7LHH5uijj35PRR4AAAAAAAD8pU71mM0i6d27d77//e+XOwYAAAAAAADvYybzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKKiqcgfgLW1tbXn0zEfLHQNgozS1NqW2qrbcMQAAAAAAOiWTeQXS3Nxc7ggAG02RBwAAAACw+SjzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmFUhtTU25IwBl0tbUVO4IAAAAAAAUUFW5A/CWisrK/Oyww8sdAyiDwx/+WbkjAAAAAABQQCbzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABTUJi/z5s+fnzFjxqyzbcqUKbn77rvXe8y0adPy1FNPpampKbNnz37P1xozZkzmz5+/zrarrroqd9xxR/v7iy++OGeccUaam5szevTo93zud7JkyZLU19f/VecAAAAAAACA96oQk3mnn356Bg4cmJdeemmjyrx3UyqVMmnSpKxcuTJXXnllampqcvXVV2+ScwMAAAAAAEBHqOrIi82fPz833HBDqqurs2zZsgwfPjyjRo3K2LFjM3z48Nx///1ZvHhxrr766nz+85/P+PHjs2rVqiTJ+eefn3322SezZs3K7Nmzs8MOO2TlypXveJ1SqZR///d/T2tra775zW+msvLNzvKQQw7Jo48+mvr6+uy7775ZtGhRVq9enalTp+aDH/xgrrnmmvz4xz9Oz54988Ybb+Sss85Knz59cu6556ZUKmWHHXZov8ajjz6aK664IrW1tdl2221z0UUXpaGhIdOmTUt1dXVWrFiRE044IY899lieffbZfO5zn8uJJ564+b9kAAAAAAAAOo0OK/MqKiqSJMuXL88999yT5ubmHHrooRk1alT7PiNHjszChQszevToTJ48OQcddFBOPPHELF26NOPGjcu0adNy66235t57701FRUWOO+64d7zW9ddfnz59+qRLly7t1/1LAwcOzPjx43P55Zdn7ty5Oeyww/LII49kzpw5aWlpyZFHHpkkufnmm/OpT30qI0aMyH333Zc77rgjpVIpEyZMyB133JGddtopt9xyS6699toMHTo0K1asyPe+97385je/yVlnnZUHHnggL774YkaPHq3MAwAAAAAAYKNs8sds1tXVpbm5eZ1tr7/+empra5Mke++9d6qqqtKtW7fU1dWt9zwLFy7Md77zndTX12fChAl55ZVX8txzz2XPPfdMTU1NqqurM3DgwHc89uMf/3hmzJiR7t2759prr33Hffbbb78kyc4775ympqYsWbIkf/M3f5MuXbqkrq4uH/rQh5IkixYtar/O4MGDkySrVq1Kjx49stNOOyVJDjjggCxatChJstdee6W6ujpbbbVVdtttt9TU1GSbbbZJU1PTe/r+AAAAAAAA4M82eZnXr1+/NDQ0pLGxMUnS1NSUBQsWZMCAAUmy3km5JKmsrExbW1uSpG/fvvnCF76QmTNn5oorrsiRRx6Z3r17Z/HixVmzZk3Wrl2bhoaGdzzPXnvtlSSZNGlS5syZk/nz528w95577pmnn346bW1taW5uzjPPPNOe44knnkiSPP3000mS7bbbLqtXr26/x1/84hfZY489Nnh/AAAAAAAAsDE2+WM2e/TokbFjx+aLX/xi6urq0tLSkvr6+uy+++5ZsWLFux67/fbbp6WlJZMnT87IkSMzfvz43HXXXVm9enVGjx6dnj175qyzzsoJJ5yQnj17pmvXru96vm222SaXXnppzjnnnNx9993vuu8+++yTww8/PCNGjMh2222X6urqVFVV5ayzzsqYMWNy3333pVevXkneLOy+8Y1v5Mwzz0xFRUW22WabXHzxxe3TeQAAAAAAALApVJRKpVK5QxTBypUr86Mf/SgnnXRSmpubc8QRR+SWW27Jrrvu2mEZGhoa0vjFkR12PaA4Dn/4Z+WOsNk0NDSkf//+5Y4BsElZ24DOyNoGdEbWNqAzsrZ1Xuv7227yybz3q+222y6//vWv8+lPfzoVFRU5/vjjO7TIAwAAAAAAgL+kzPv/Kisrc/HFF5c7BgAAAAAAALSrLHcAAAAAAAAA4J0p8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFBV5Q7AW0ptbTn84Z+VOwZQBm1NTamsrS13DAAAAAAACsZkXoE0NTeXOwJQJoo8AAAAAADeiTIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyrwCqampKXcE6DRaW9aWOwIAAAAAAPzVqsodgLdUVlbm6nPuLXcM6BRGX3ZkuSMAAAAAAMBfzWQeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCg3lOZt3Tp0vzsZz/LihUrUiqVNncmAAAAAAAAIEnVhna47bbb8sADD+RPf/pTjjnmmPzud7/LBRdc0BHZAAAAAAAAYIu2wcm8uXPnZsaMGdlqq63yhS98Ib/61a86IhcAAAAAAABs8TZY5v35sZoVFRVJkpqams2bCAAAAAAAAEjyHh6z+alPfSonnXRSli9fntNOOy2f+MQnOiIXAAAAAAAAbPE2WOb9y7/8Sw4++OAsXLgwffv2zT777NMRuQAAAAAAAGCLt8Ey76mnnsrcuXPT1NSU+fPnJ0kmTpy4uXNtVsuWLctRRx2VAQMGtG8bMmRIRo8eXcZUAAAAAAAAsK4NlnnnnXdeTjvttGy99dYdkafD7Lnnnpk5c2a5YwAAAAAAAMB6bbDM23333XPcccd1RJaymj9/fqZMmZLq6uqMGDEidXV1mTVrVvvnU6dOzaJFi3LDDTekuro6y5Yty/DhwzNq1KgsXbo0559/flpaWlJXV5fLL788TU1NmTBhQpqamlJbW5tJkyZll112KeMdAgAAAAAA8H6zwTLvH//xHzNmzJj069evfVtneBzl4sWLU19f3/7++OOPT1NTU2bPnp0kue666zJt2rR07do1F1xwQebNm5eddtopy5cvzz333JPm5uYceuihGTVqVC699NKcfvrpOeyww3LfffflmWeeyZw5c1JfX5/DDz88P//5zzNlypRcdtll5bpdAAAAAAAA3oc2WObdfvvt+fu///tO/5jN+fPnp0+fPu3vt99++5x33nnp3r17nnvuuQwaNChJsvfee6eqqipVVVWpq6tLkvz3f/939t9//yTJ8OHDkyQXXXRRrr/++tx4440plUqprq7uqFsDAAAAAACgk9hgmbfNNtvk9NNP74gsZVdZWZkkefXVV3PllVfmoYceSpKcfPLJKZVKSZKKioq3HdevX788/fTT+du//dvcc889+dOf/pS+ffvmlFNOyeDBg7NkyZIsWLCgw+4DAAAAAACAzmGDZd52222XCy64IPvtt197kfWZz3xmswcrpx49emTw4ME59thj061bt2y99dZpbGxMr1693nH/r371q7ngggty7bXXpq6uLpMnT87QoUMzceLENDU1Zc2aNRk/fnwH3wUAAAAAAADvdxss83bfffckycsvv7zZw3SUXr165a677lpn25AhQzJkyJAkb07fTZ069R2P/fM+SfLoo48mefM7uuWWW9bZb9ttt8306dM3ZWwAAAAAAAC2MBss80aPHp3Gxsa0tramVCqlsbGxI3IBAAAAAADAFm+DZd7Xvva1PPnkk3njjTeyZs2a9O7d+21TbQAAAAAAAMCmV7mhHZ577rnMnTs3f/d3f5e5c+emtra2I3IBAAAAAADAFm+DZV737t1TUVGR119/PT179kxLS0tH5AIAAAAAAIAt3gbLvAEDBmT69OnZcccdM2bMmLS2tnZELgAAAAAAANjibfA3884+++ysXr06dXV1efjhhzNw4MCOyAUAAAAAAABbvPWWed/73vfecfu8efNyzDHHbLZAAAAAAAAAwJvWW+YtWbJknfelUil333136urqlHkAAAAAAADQAdZb5p1zzjntr59//vmMHTs2Q4cOzde+9rUOCQYAAAAAAABbug3+Zt6sWbNyyy23ZNy4cRk2bFhHZAIAAAAAAADyLmXeiy++mHHjxmWbbbbJ7Nmzs80223RkLgAAAAAAANjirbfM+9SnPpXq6uocdNBB+frXv77OZ5dddtlmDwYAAAAAAABbuvWWeddcc01H5gAAAAAAAAD+wnrLvAMPPLAjc5Ckra0toy87stwxoFNobVmbquou5Y4BAAAAAAB/lcpyB+Atzc3N5Y4AnYYiDwAAAACAzmCDZV5LS0tH5AAAAAAAAAD+wgbLvOOOOy4XXnhhFi5c2BF5AAAAAAAAgP9vvb+Z92ff//7388gjj+Tqq6/OqlWrctRRR2X48OHp3r17R+QDAAAAAACALdYGJ/MqKytz2GGH5dOf/nS23XbbzJw5M6eeemruvPPOjsgHAAAAAAAAW6wNTuZ985vfzIMPPpgDDzwwp512WgYOHJi2trYcd9xx+cxnPtMRGQEAAAAAAGCLtMEyb5dddsndd9+9zmM1Kysrc/XVV2/WYAAAAAAAALCl2+BjNu+77753/H28Xr16bZZAAAAAAAAAwJs2OJnXrVu3XHTRRenTp08qK9/s/jxec/OoqakpdwToMK3NzanyPw8AAAAAAO9qg2Xe/vvvnyRZuXLlZg+zpausrMyF//LP5Y4BHWL8bXPKHQEAAAAAAApvg2VeZWVlzjjjjPb3l1122WYNBAAAAAAAALxpvWXe7NmzM2fOnCxZsiQPP/xwkqStrS0tLS0555xzOiwgAAAAAAAAbKnWW+YdffTROfjgg3P99ddn5MiRSd6c0tt+++07LBwAAAAAAABsySrX90FNTU169eqV//iP/8jKlSuzfPnyLFu2LL/61a86Mh8AAAAAAABssTb4m3lf+tKXsnLlyuyyyy5JkoqKihxwwAGbPRgAAAAAAABs6TZY5r388sv59re/3RFZAAAAAAAAgP9lvY/Z/LM+ffrkxRdf7IgsAAAAAAAAwP+ywcm8xx9/PMOGDUvPnj3bt82bN2+zhgIAAAAAAADeQ5l3//33d0QOAAAAAAAA4C9ssMwbN27c27ZdfPHFmyUMAAAAAAAA8JYNlnnDhw9PkpRKpTzzzDNpbGzc7KEAAAAAAACA91DmHXrooe2vDzvssJxyyimbNRAAAAAAAADwpg2WefPmzWt//dJLL+Xll3UFJIoAAB5fSURBVF/erIHKadGiRZk8eXLeeOONvP766zn88MNz4IEH5s4778zll1++zr4XXnhhTj755Oy6665lSgsAAAAAAEBnt8Eyb+7cue2va2pqctFFF23WQOXyyiuv5Oyzz85VV12VPfbYI2vXrs1ZZ52VHXbY4R33Hz9+fAcnBAAAAAAAYEuzwTLv4osvzsKFC7N48eL06dMn/fv374hcHe7BBx/MkCFDssceeyRJunTpkksvvTRPPPFEZs+enX/913/NH/7whwwbNixnnnlm6uvrM3HixNx3331ZtmxZVq5cmeXLl2fcuHE59NBD86Mf/SizZs1qP//UqVPTs2fPMt0dAAAAAAAA70eVG9ph5syZmTBhQp544olMmDAh06dP74hcHa6xsTG9e/deZ1v37t1TXV2dpqamfOtb38qsWbNy2223ve3Ympqa3HjjjRk/fnxmzJiRJFm6dGmmTZuWmTNnpk+fPus8rhQAAAAAAADeiw1O5v3gBz/IrFmzUlVVlZaWlpxwwgk59dRTOyJbh9p1113zzDPPrLPthRdeyIIFC7LXXnulpqYmSVJV9fav7M/TijvvvHOam5uTJNtvv33OO++8dO/ePc8991wGDRq0me8AAAAAAACAzmaDk3mlUqm9wKqurk51dfVmD1UOw4YNyyOPPJLf/e53SZKWlpZccskl2W677VJRUfGux/7l56+++mquvPLKXH755fnGN76R2tralEqlzZYdAAAAAACAzmmDk3kf+chH8qUvfSkf+chH8vjjj2f//ffviFwdrkePHrnkkkty/vnnp1Qq5bXXXsuwYcPSr1+//Nd//ddGn2vw4ME59thj061bt2y99dZpbGzcTMkBAAAAAADorCpK72Fk7KGHHsqSJUvSr1+/DB06tANibZkaGhpy94UTyh0DOsT42+aUOwIdpKGhof1xxACdhbUN6IysbUBnZG0DOiNrW+e1vr/tuz5m884770xra2uGDh2aD3/4w/n973+/2QICAAAAAAAA61pvmXfVVVfl0UcfTUtLS5Jk5513zqOPPpqrr766w8IBAAAAAADAlmy9Zd7DDz+cqVOnpmvXrkmSXr165fLLL89Pf/rTDgsHAAAAAAAAW7L1lnndunVLRUXFOtuqq6vTvXv3zR4KAAAAAAAAeJcyr66uLi+88MI621544YW3FXwAAAAAAADA5lG1vg/OPffcnHHGGTn44IPTu3fvLF++PPPmzcull17akfkAAAAAAABgi7Xeyby99tort99+e/bbb7+88cYbGTBgQO64447st99+HZkPAAAAAAAAtljrncxLkq222irHHHNMR2UBAAAAAAAA/pf1TuYBAAAAAAAA5aXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoKrKHYC3tLW1Zfxtc8odAzpEa3Nzqmpqyh0DAAAAAAAKzWRegTQ3N5c7AnQYRR4AAAAAAGyYMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZV6B1NbUljsC/FXaWteWOwIAAAAAAHQqVeUOwFsqKivScOFPyh0D/s/6j/9YuSMAAAAAAECnYjIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp896jZcuWZcSIEfntb3+bBQsWrHe/+fPnZ8yYMR2YDAAAAAAAgM5KmbeR7r///ixevLjcMQAAAAAAANgCVJU7wPvJH//4x3z3u99NdXV1BgwYkOXLl2fWrFntn0+dOrX99bx583LXXXflyiuvTJKccMIJufLKK7Pjjjt2eG4AAAAAAADen0zmbYRtt902xx57bL7whS9k4MCBWbp0aaZNm5aZM2emT58+mTdvXvu+hxxySBYuXJg//elPWbx4cbbbbjtFHgAAAAAAABvFZN5fYfvtt895552X7t2757nnnsugQYPaP6uoqMhRRx2VH/zgB1m2bFn++Z//uYxJAQAAAAAAeD9S5m2kioqKtLW15dVXX82VV16Zhx56KEly8sknp1QqrbPvpz/96Zx77rl54403cs4555QhLQAAAAAAAO9nyryN9KEPfSjf/OY3069fvwwePDjHHntsunXrlq233jqNjY3p1atX+7477bRTunfvnkGDBqWqylcNAAAAAADAxtEwvUe9evXKXXfdlSQZOnRokuSggw56x32HDBnS/rpUKnnEJgAAAAAAAP8nleUO0FmtWbMmxx13XPbdd9/svvvu5Y4DAAAAAADA+5DJvM2krq4ud999d7ljAAAAAAAA8D5mMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCqip3AN5Saitlv/EfK3cM+D9ra12byqou5Y4BAAAAAACdhsm8Amlqbip3BPirKPIAAAAAAGDTUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwrkJqamnJHYBNpaWkpdwQAAAAAAKATqCp3AN5SWVmZiRMnljsGm4C/IwAAAAAAsCmYzAMAAAAAAICCUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUFXlDtBRFi1alMmTJ+eNN97I66+/nsMPPzxnnnlmKioqNtk1mpqa8k//9E/5yU9+ssnOCQAAAAAAwJZri5jMe+WVV3L22Wfna1/7WmbOnJm77rorCxcuzLe//e1yRwMAAAAAAID12iIm8x588MEMGTIke+yxR5KkS5cuufTSS1NdXZ3x48dnxYoVWbVqVQ477LB8+ctfztixY1NTU5P/+Z//SWNjYy655JIMGDAgt912W+6///60trZmq622ylVXXZWWlpace+65eeWVV7Lbbru1X/MXv/hFrr766iTJmjVrcumll6ZPnz7luH0AAAAAAADep7aIybzGxsb07t17nW3du3dPY2NjBg0alOnTp+eOO+7IHXfc0f75rrvumunTp6e+vj533nln2tra8sc//jEzZszI7bffntbW1jz99NP57ne/m7333juzZs3KCSec0H78nx/reeutt+ZjH/tYfvSjH3XY/QIAAAAAANA5bBGTebvuumueeeaZdba98MILWbFiRZ5++uk89thj6dGjR5qbm9s/79+/f5Jk5513zi9/+ctUVlamuro6Z599drp165YVK1aktbU1ixYtyqGHHpok+fCHP5yqqje/0p122ikXXnhhunXrlhdffDGDBw/uoLsFAAAAAACgs9giJvOGDRuWRx55JL/73e+SJC0tLbnkkkvS0NCQrbbaKpdddllOOeWUrFmzJqVSKUlSUVGxzjmeffbZ/PjHP84VV1yRCRMmpK2tLaVSKX379s2TTz6ZJHnmmWfS2tqaJDn//PNz0UUX5ZJLLsmOO+7Yfl4AAAAAAAB4r7aIybwePXrkkksuyfnnn59SqZTXXnstw4YNy8EHH5yzzz47jz/+eLp27Zrdd989jY2N73iO3XffPV27ds1xxx2Xmpqa7LDDDmlsbMxJJ52UcePG5bOf/Wz69u2b6urqJMnRRx+dESNGZOutt84HPvCB9Z4XAAAAAAAA1qeiZGSsMBoaGnLnnXeWOwabwMSJE8sdAQqjoaGh/dHFAJ2FtQ3ojP5fe3cfpFVdvw/82l0WQkGJcEqdcEBTs0JcGbOxNEdJCvABBXTzFk2nxhrzoUzCjC1JxdKaVscMfMhtdAQrQ0f9amSRT5CkiEbYbMb4NGaJwiLDLrv374/GNUQX8QecA7xef+19zuc+e53Z4T03c+35rNkGbIvMNmBbZLZtu97pZ7tdbLMJAAAAAAAAWyNlHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfMAAAAAAACgpJR5AAAAAAAAUFLKPAAAAAAAACgpZR4AAAAAAACUlDIPAAAAAAAASkqZBwAAAAAAACXVq+gAvKmrqytNTU1Fx2AT6OjoSH19fdExAAAAAACArZwn80qkvb296AhsIoo8AAAAAABgU1DmAQAAAAAAQEkp8wAAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKCllHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMK5HevXsXHYH3oLNzTdERAAAAAACAbVSvogPwptra2syafVDRMdhIE8YvKDoCAAAAAACwjfJkHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfMAAAAAAACgpJR5AAAAAAAAUFLKPAAAAAAAACgpZR4AAAAAAACUlDIPAAAAAAAASkqZBwAAAAAAACWlzAMAAAAAAICS2i7LvPnz52efffbJXXfdtc7xsWPHZvLkye/6Or/+9a8zd+7cTR0PAAAAAAAAkmynZV6SDB06NHfeeWf366VLl2b16tUbdY1x48bliCOO2NTRAAAAAAAAIEnSq+gARdl3333zz3/+MytWrMhOO+2UOXPmZOzYsXnxxRdz991358Ybb0xtbW0OPPDAfPOb38z06dNTX1+fc845J6eddlpOO+20LF68OIMGDcrEiRMzbdq0PPHEE+no6MhZZ52VI488MpdddlkWLlyYJBkzZkwmTZpU8F0DAAAAAACwNdlun8xLkpEjR+a+++5LtVrNE088kQMOOCCvvvpqmpubc+ONN+aWW27JSy+9lAcffDDnnXdeHnnkkVxwwQUZNmxYPvvZz3ZfZ+7cuVm+fHluu+22zJw5M4sXL87999+f5557LrNmzcrNN9+cO++8M0uXLi3uZgEAAAAAANjqbNdl3tixY3PXXXflz3/+c0aMGJEk6ezszCuvvJIvf/nLqVQqaW1tzbPPPpv6+vpMmjQpd999d0455ZR1rvPMM89k+PDhSZJddtkl5557blpbWzNixIjU1NSkvr4++++/f1pbW7f4PQIAAAAAALD12q7LvA9/+MN5/fXX09LSkqOPPjpJUlNTk1133TXXX399WlpacvLJJ2f//ffPa6+9lp/97GeZPHlyLrroonWuM3To0CxevDhJsnLlypx++unZc889u7fY7OjoyGOPPZY99thjy94gAAAAAAAAW7Xt9m/mveELX/hCfvvb32bIkCF59tlnM3DgwIwePTqVSiWdnZ3Zfffd8/nPfz7nn39+zjjjjBxzzDF58sknc9NNN3Vf44gjjsjDDz+ck046KZ2dnfna176Www47LAsWLMjEiRPT0dGRUaNG5WMf+1iBdwoAAAAAAMDWpqZarVaLDsF/LVmyJIufnFR0DDbShPELio4ApbZkyZJ89KMfLToGwCZltgHbIrMN2BaZbcC2yGzbdr3Tz3a73mYTAAAAAAAAykyZBwAAAAAAACWlzAMAAAAAAICSUuYBAAAAAABASSnzAAAAAAAAoKSUeQAAAAAAAFBSyjwAAAAAAAAoKWUeAAAAAAAAlJQyDwAAAAAAAEpKmQcAAAAAAAAlpcwDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAKCkehUdgDd1dXVlwvgFRcdgI3V2rkldXZ+iYwAAAAAAANsgT+aVSHt7e9EReA8UeQAAAAAAwOaizAMAAAAAAICSUuYBAAAAAABASSnzAAAAAAAAoKSUeQAAAAAAAFBSyjwAAAAAAAAoKWUeAAAAAAAAlJQyDwAAAAAAAEpKmVcivXv3LjoCb2NNZ2fREQAAAAAAgO1Ur6ID8Kba2trsf9v/FR2Dt1h0wlFFRwAAAAAAALZTnswDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKCllHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfMAAAAAAACgpJR5AAAAAAAAUFLKvP8xf/78fOpTn0qlUsnJJ5+cE088Ma2tre/5ej/4wQ/ywgsvpLm5ObfccssmTAoAAAAAAMD2oFfRAcrm4IMPzo9//OMkyQMPPJDLL78811577Xu61oUXXrgpowEAAAAAALCdUeb1YMWKFdl9991TqVTy/ve/PytWrEhzc3O+853vZOXKlVm+fHnGjx+fxsbGnHnmmWlra0uS/OUvf8kNN9yQ5ubmNDU1FXsTAAAAAAAAbLWUeW/xyCOPpFKppL29PUuXLs21116bv//97xk7dmxGjhyZp556KqNHj87nPve5vPTSS6lUKmlsbMw111yTJLniiivS0NCQgw46qOA7AQAAAAAAYGunzHuL/91m8x//+EdOPPHE7LHHHhkyZEiSZNCgQfnFL36Re++9N/369cvatWu733vdddflP//5Ty655JJCsgMAAAAAALBtqS06QJkNGjSo++uampokyfXXX5/hw4fnRz/6UUaNGpVqtZokmT17dhYuXJiLL764kKwAAAAAAABsezyZ9xZvbLNZW1ubVatWZfLkyfnNb37Tff7www9PU1NT7rjjjgwYMCB1dXV5/vnnM3Xq1DQ0NOTUU09NkkyYMKGgOwAAAAAAAGBbocz7H5/85Cfz8MMPr3d83Lhx3V8ffPDBueeee9Zb89e//nW9Y2PHjk2SnHXWWZswJQAAAAAAANsL22wCAAAAAABASSnzAAAAAAAAoKSUeQAAAAAAAFBSyjwAAAAAAAAoKWUeAAAAAAAAlJQyDwAAAAAAAEpKmQcAAAAAAAAlpcwDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKKleRQfgTV1dXVl0wlFFx+At1nR2pk9dXdExAAAAAACA7ZAn80qkvb296Ai8DUUeAAAAAABQFGUeAAAAAAAAlJQyDwAAAAAAAEpKmQcAAAAAAAAlVVOtVqtFh+C/Hn/88fTp06foGAAAAAAAAGxha9asyfDhw9c7rswDAAAAAACAkrLNJgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfO2sK6urnz3u9/NxIkTU6lUsmzZsnXOz5o1K+PGjcuECRNy//33F5QSYONsaLbdeOONGT9+fMaPH5+rrrqqoJQAG2dDs+2NNWeccUZuueWWAhICbLwNzbY//vGPmTBhQiZMmJCmpqZUq9WCkgK8exuabdddd13GjRuX448/Pvfdd19BKQHem0WLFqVSqax3/Pe//32OP/74TJw4MbNmzSogGVtSr6IDbG9+97vfpb29Pbfeemsef/zxXHbZZbnmmmuSJC+//HJaWlryq1/9KmvWrEljY2MOOeSQ9O7du+DUAD3rabY9++yzmTNnTmbPnp2ampo0NjbmyCOPzL777ltwaoCe9TTb3vCTn/wkr732WkEJATZeT7Otra0tP/zhD3PTTTdl4MCBmTFjRpYvX56BAwcWnBqgZz3NthUrVqSlpSX33ntvVq9enWOPPTYjR44sODHAuzNjxozMmTMnffv2Xed4R0dHLr300tx2223p27dvTjrppBx++OHZZZddCkrK5ubJvC1s4cKF+cxnPpMkGT58eJ588snuc0888UQOOOCA9O7dO/3798/gwYPzt7/9raioAO9aT7PtQx/6UGbOnJm6urrU1tZm7dq16dOnT1FRAd61nmZbktxzzz2pqanJoYceWkQ8gPekp9n22GOPZe+998706dPT2NiYQYMGKfKArUJPs61v377Zbbfdsnr16qxevTo1NTVFxQTYaIMHD05zc/N6x1tbWzN48ODsvPPO6d27dw488MA8+uijBSRkS/Fk3hbW1taWfv36db+uq6vL2rVr06tXr7S1taV///7d53bccce0tbUVERNgo/Q02+rr6zNw4MBUq9Vcfvnl2W+//TJkyJAC0wK8Oz3Ntqeffjp33nlnfvrTn+bqq68uMCXAxulpti1fvjzz58/P7bffnh122CFf/OIXM3z4cJ/dgNLrabYlya677prRo0ens7MzX/nKV4qKCbDRjjrqqDz33HPrHdclbH+UeVtYv379smrVqu7XXV1d3R8s3npu1apV6/yDBCirnmZbkqxZsyZTpkzJjjvumKlTpxYREWCj9TTbbr/99rz00kuZNGlSnn/++dTX12f33Xf3lB5Qej3NtgEDBuQTn/hE9/ZMI0aMyJIlS5R5QOn1NNvmzZuXf/3rX5k7d26S5PTTT09DQ0OGDRtWSFaATUGXsP2xzeYW1tDQkHnz5iVJHn/88ey9997d54YNG5aFCxdmzZo1WblyZVpbW9c5D1BWPc22arWar371q9lnn33y/e9/P3V1dUXFBNgoPc22b33rW5k9e3ZaWlpy3HHH5dRTT1XkAVuFnmbbxz/+8Tz99NN55ZVXsnbt2ixatCh77bVXUVEB3rWeZtvOO++c973vfendu3f69OmT/v37Z8WKFUVFBdgk9txzzyxbtiyvvvpq2tvb8+ijj+aAAw4oOhabkSfztrCRI0fmwQcfzIknnphqtZpLLrkkN9xwQwYPHpwjjjgilUoljY2NqVarOffcc/1dKWCr0NNs6+rqyoIFC9Le3p4//elPSZLzzjvPBwyg9Db0uQ1ga7Sh2faNb3wjZ5xxRpJk1KhRfsEU2CpsaLY99NBDmTBhQmpra9PQ0JBDDjmk6MgA78kdd9yR119/PRMnTszkyZNz+umnp1qt5vjjj88HP/jBouOxGdVUq9Vq0SEAAAAAAACA9dlmEwAAAAAAAEpKmQcAAAAAAAAlpcwDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAGAjLFq0KJVKZYPrli1bljFjxnS/fvnllzNp0qQ0Njbm7LPPzurVqzd4jV7/X0kBAACgBx0dHZkyZUqef/75tLe358wzz8xee+2VyZMnp6amJh/5yEcyderU1NbW5qqrrsof/vCH9OrVK1OmTMmwYcOybNmyt10LAABQlBkzZmTOnDnp27dvj+tuv/323HTTTVm+fHn3sZ///Oc57rjjcuyxx6a5uTm33nprTj311B6v439AAAAAbDZz5szJgAEDcvPNN2fGjBm5+OKLc+mll+acc87JzTffnGq1mrlz5+app57KggULMnv27Fx55ZX53ve+lyRvuxYAAKBIgwcPTnNzc/frpUuXplKppFKp5KyzzsrKlSuTJDvvvHN++ctfrvPeKVOm5Oijj05XV1defPHFfOADH9jg91PmAQAAsNmMGjUqZ599dvfrurq6PPXUUznooIOSJIceemgeeuihLFy4MJ/+9KdTU1OT3XbbLZ2dnXnllVfedi0AAECRjjrqqPTq9ebmlxdddFGmTp2alpaWHHrooZk5c2aS5PDDD88OO+ywzntramrS2dmZMWPGZP78+WloaNjg97PNJgAAAJvNjjvumCRpa2vL17/+9ZxzzjmZPn16ampqus+vXLkybW1tGTBgwDrvW7lyZarV6nprAQAAyqS1tbV7d5GOjo4MGTKkx/X19fW566678tBDD+WCCy5Y7+m9t/JkHgAAAJvViy++mFNOOSXHHHNMxo4du87fvFu1alV22mmn9OvXL6tWrVrneP/+/d92LQAAQJkMGTIk06dPT0tLS84///wcdthh77i2qakpjzzySJL//sLiG7+82BNlHgAAAJvNv//973zpS1/K+eefnxNOOCFJst9++2X+/PlJknnz5mXEiBFpaGjIAw88kK6urrzwwgvp6urKwIED33YtAABAmTQ1NeWCCy5IY2Njrrjiiuyzzz7vuLZSqeTqq69OpVLJlVdemaampg1ev6ZarVY3YV4AAADoNm3atNx9990ZOnRo97ELL7ww06ZNS0dHR4YOHZpp06alrq4uzc3NmTdvXrq6uvLtb387I0aMyDPPPJOLLrpovbUAAADbC2UeAAAAAAAAlJRtNgEAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKCllHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJ/T/jEbejW4J9qQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<Figure size 2160x576 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "sns.set_style(\"whitegrid\")\n", - "plt.figure(figsize=(30,8))\n", - "df = df.sort_values(by='2000',ascending=False)\n", - "sns.barplot(x='2000', y='Country Name',data=df.iloc[0:10,], orient='h')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git "a/ebooks/Python\346\225\260\346\215\256\345\210\206\346\236\220\344\270\216\346\214\226\346\216\230\345\256\236\346\210\230_\345\244\247\346\225\260\346\215\256\346\212\200\346\234\257\344\270\233\344\271\246_-_\345\274\240\350\211\257\345\235\207__\347\255\211__\350\275\257\344\273\266\345\267\245\345\205\267_\347\250\213\345\272\217\350\256\276\350\256\241.pdf" "b/ebooks/Python\346\225\260\346\215\256\345\210\206\346\236\220\344\270\216\346\214\226\346\216\230\345\256\236\346\210\230_\345\244\247\346\225\260\346\215\256\346\212\200\346\234\257\344\270\233\344\271\246_-_\345\274\240\350\211\257\345\235\207__\347\255\211__\350\275\257\344\273\266\345\267\245\345\205\267_\347\250\213\345\272\217\350\256\276\350\256\241.pdf" new file mode 100644 index 0000000..61821e5 Binary files /dev/null and "b/ebooks/Python\346\225\260\346\215\256\345\210\206\346\236\220\344\270\216\346\214\226\346\216\230\345\256\236\346\210\230_\345\244\247\346\225\260\346\215\256\346\212\200\346\234\257\344\270\233\344\271\246_-_\345\274\240\350\211\257\345\235\207__\347\255\211__\350\275\257\344\273\266\345\267\245\345\205\267_\347\250\213\345\272\217\350\256\276\350\256\241.pdf" differ diff --git a/ebooks/pyda-2e.pdf b/ebooks/pyda-2e.pdf new file mode 100644 index 0000000..904b0f3 Binary files /dev/null and b/ebooks/pyda-2e.pdf differ diff --git "a/GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md" "b/project/Country_GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md" similarity index 96% rename from "GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md" rename to "project/Country_GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md" index fcc46f0..64f1a6d 100644 --- "a/GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md" +++ "b/project/Country_GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md" @@ -12,6 +12,7 @@ import seaborn as sns ### 导入数据 +[数据下载](https://github.com/LIU-HONGYANG/python/blob/master/GDP/Country_GDP.csv) ```{python} Country_GDP= pd.read_csv("Country_GDP.csv",sep=";") @@ -129,4 +130,8 @@ sns.barplot(x='2000', y='Country Name',data=df.iloc[0:10,], orient='h') ## 结果 - \ No newline at end of file + + +References: + +[GDP (current US$)](https://data.worldbank.org/indicator/ny.gdp.mktp.cd) \ No newline at end of file diff --git a/GDP/Country_GDP.csv b/project/Country_GDP/Country_GDP.csv similarity index 100% rename from GDP/Country_GDP.csv rename to project/Country_GDP/Country_GDP.csv diff --git a/GDP/download.png b/project/Country_GDP/download.png similarity index 100% rename from GDP/download.png rename to project/Country_GDP/download.png diff --git "a/GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb" "b/project/Country_GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb" similarity index 100% rename from "GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb" rename to "project/Country_GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb"