diff --git "a/GDP/.ipynb_checkpoints/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226-checkpoint.ipynb" "b/GDP/.ipynb_checkpoints/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226-checkpoint.ipynb"
deleted file mode 100644
index e451353..0000000
--- "a/GDP/.ipynb_checkpoints/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226-checkpoint.ipynb"
+++ /dev/null
@@ -1,1525 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# 各国GDP数据可视化\n",
-    "\n",
-    "# 数据来自世界银行"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### 导入资源包,如下:\n",
-    "### Pandas, numpy, seaborn 和  matplotlib\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 67,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import pandas as pd\n",
-    "import numpy as np\n",
-    "import matplotlib.pyplot as plt\n",
-    "import seaborn as sns"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 69,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "Country_GDP= pd.read_csv(\"Country_GDP.csv\",sep=\";\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 178,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df = pd.DataFrame(Country_GDP)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 179,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "Index(['Country Name', 'Country Code', 'Indicator Name', 'Indicator Code',\n",
-       "       '1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968',\n",
-       "       '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976', '1977',\n",
-       "       '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986',\n",
-       "       '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',\n",
-       "       '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004',\n",
-       "       '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',\n",
-       "       '2014', '2015', '2016', '2017', '2018', '2019', 'Unnamed: 64',\n",
-       "       'increaseRate2013-2018'],\n",
-       "      dtype='object')"
-      ]
-     },
-     "execution_count": 179,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "Country_GDP.columns"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 111,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df['increaseRate2013-2018'] = (df[\"2018\"] - df[\"1978\"])/df[\"1990\"] *100\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 143,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#df2 = df.sort_values(by='increaseRate2013-2018',ascending=True)\n",
-    "#DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 144,
-   "metadata": {},
-   "outputs": [
-    {
-     "ename": "SyntaxError",
-     "evalue": "keyword can't be an expression (<ipython-input-144-7aac8fac96e5>, line 2)",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;36m  File \u001b[0;32m\"<ipython-input-144-7aac8fac96e5>\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m    sns.barplot(df2['increaseRate2013-2018'], horiz=TRUE,names.arg=df2['Country Name'])\u001b[0m\n\u001b[0m                                                        ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m keyword can't be an expression\n"
-     ]
-    }
-   ],
-   "source": [
-    "plt.figure(figsize=(300,30))\n",
-    "sns.barplot(df2['increaseRate2013-2018'], horiz=TRUE,names.arg=df2['Country Name'])\n",
-    "\n",
-    "#barplot(counts, main=\"Car Distribution\", horiz=TRUE,names.arg=c(\"3 Gears\", \"4 Gears\", \"5 Gears\"))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 145,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "pd.set_option('display.max_rows',20)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 146,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#sns.plot.barh(df2['increaseRate2013-2018'],df2['Country Name'])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 190,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#plt.figure(figsize=(100,30))\n",
-    "\n",
-    "#data=df.iloc[0:25,]\n",
-    "#sns.barplot(x='2005', y='Country Name',data=df.iloc[0:20,], orient='h')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 231,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df=df.drop(df[df['Country Name']==\"World\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"High income\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"OECD members\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Post-demographic dividend\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Europe & Central Asia\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"European Union\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"IBRD only\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Middle income\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Low & middle income\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"IDA & IBRD total\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Post-demographic dividend\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Late-demographic dividend\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Upper middle income\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Late-demographic dividend\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"North America\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"East Asia & Pacific\"].index,axis=0)\n",
-    "\n",
-    "df=df.drop(df[df['Country Name']==\"Euro area\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Early-demographic dividend\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"East Asia & Pacific (excluding high income)\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"East Asia & Pacific (IDA & IBRD countries)\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Late-demographic dividend\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Latin America & Caribbean\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Latin America & the Caribbean (IDA & IBRD coun...\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Latin America & Caribbean (excluding high income)\"].index,axis=0)\n",
-    "\n",
-    "\n",
-    "df=df.drop(df[df['Country Name']==\"Lower middle income\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Latin America & the Caribbean (IDA & IBRD coun...\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Europe & Central Asia (IDA & IBRD countries)\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Middle East & North Africa\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"South Asia (IDA & IBRD)\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Europe & Central Asia (excluding high income)\t\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Name']==\"Arab World\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"TLA\"].index,axis=0)\n",
-    "\n",
-    "\n",
-    "\n",
-    "df=df.drop(df[df['Country Code']==\"ECA\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"SAS\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"ECA\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"IDA\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"SSF\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"TSS\"].index,axis=0)\n",
-    "\n",
-    "df=df.drop(df[df['Country Code']==\"SSA\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"CEB\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"PRE\"].index,axis=0)\n",
-    "\n",
-    "\n",
-    "df=df.drop(df[df['Country Code']==\"LDC\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"IDB\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"IDX\"].index,axis=0)\n",
-    "\n",
-    "df=df.drop(df[df['Country Code']==\"FCS\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"IDB\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"HPC\"].index,axis=0)\n",
-    "\n",
-    "df=df.drop(df[df['Country Code']==\"OSS\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"SST\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"LIC\"].index,axis=0)\n",
-    "\n",
-    "\n",
-    "df=df.drop(df[df['Country Code']==\"MNA\"].index,axis=0)\n",
-    "df=df.drop(df[df['Country Code']==\"TMN\"].index,axis=0)\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 232,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>Country Name</th>\n",
-       "      <th>Country Code</th>\n",
-       "      <th>Indicator Name</th>\n",
-       "      <th>Indicator Code</th>\n",
-       "      <th>1960</th>\n",
-       "      <th>1961</th>\n",
-       "      <th>1962</th>\n",
-       "      <th>1963</th>\n",
-       "      <th>1964</th>\n",
-       "      <th>1965</th>\n",
-       "      <th>...</th>\n",
-       "      <th>2012</th>\n",
-       "      <th>2013</th>\n",
-       "      <th>2014</th>\n",
-       "      <th>2015</th>\n",
-       "      <th>2016</th>\n",
-       "      <th>2017</th>\n",
-       "      <th>2018</th>\n",
-       "      <th>2019</th>\n",
-       "      <th>Unnamed: 64</th>\n",
-       "      <th>increaseRate2013-2018</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>249</th>\n",
-       "      <td>United States</td>\n",
-       "      <td>USA</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>5.433000e+11</td>\n",
-       "      <td>5.633000e+11</td>\n",
-       "      <td>6.051000e+11</td>\n",
-       "      <td>6.386000e+11</td>\n",
-       "      <td>6.858000e+11</td>\n",
-       "      <td>7.437000e+11</td>\n",
-       "      <td>...</td>\n",
-       "      <td>1.619701e+13</td>\n",
-       "      <td>1.678485e+13</td>\n",
-       "      <td>1.752175e+13</td>\n",
-       "      <td>1.821930e+13</td>\n",
-       "      <td>1.870719e+13</td>\n",
-       "      <td>1.948539e+13</td>\n",
-       "      <td>2.049410e+13</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>771.496373</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>117</th>\n",
-       "      <td>Japan</td>\n",
-       "      <td>JPN</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>4.430734e+10</td>\n",
-       "      <td>5.350862e+10</td>\n",
-       "      <td>6.072302e+10</td>\n",
-       "      <td>6.949813e+10</td>\n",
-       "      <td>8.174901e+10</td>\n",
-       "      <td>9.095028e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>6.203213e+12</td>\n",
-       "      <td>5.155717e+12</td>\n",
-       "      <td>4.850414e+12</td>\n",
-       "      <td>4.389476e+12</td>\n",
-       "      <td>4.926667e+12</td>\n",
-       "      <td>4.859951e+12</td>\n",
-       "      <td>4.970916e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>390.415929</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>53</th>\n",
-       "      <td>Germany</td>\n",
-       "      <td>DEU</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>...</td>\n",
-       "      <td>3.543984e+12</td>\n",
-       "      <td>3.752514e+12</td>\n",
-       "      <td>3.898727e+12</td>\n",
-       "      <td>3.381389e+12</td>\n",
-       "      <td>3.495163e+12</td>\n",
-       "      <td>3.693204e+12</td>\n",
-       "      <td>3.996759e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>441.809779</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>79</th>\n",
-       "      <td>United Kingdom</td>\n",
-       "      <td>GBR</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>7.232805e+10</td>\n",
-       "      <td>7.669436e+10</td>\n",
-       "      <td>8.060194e+10</td>\n",
-       "      <td>8.544377e+10</td>\n",
-       "      <td>9.338760e+10</td>\n",
-       "      <td>1.005958e+11</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.676605e+12</td>\n",
-       "      <td>2.753565e+12</td>\n",
-       "      <td>3.034729e+12</td>\n",
-       "      <td>2.896421e+12</td>\n",
-       "      <td>2.659239e+12</td>\n",
-       "      <td>2.637866e+12</td>\n",
-       "      <td>2.825208e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>741.128517</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>75</th>\n",
-       "      <td>France</td>\n",
-       "      <td>FRA</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>6.265147e+10</td>\n",
-       "      <td>6.834674e+10</td>\n",
-       "      <td>7.631378e+10</td>\n",
-       "      <td>8.555111e+10</td>\n",
-       "      <td>9.490659e+10</td>\n",
-       "      <td>1.021606e+11</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.683825e+12</td>\n",
-       "      <td>2.811078e+12</td>\n",
-       "      <td>2.852166e+12</td>\n",
-       "      <td>2.438208e+12</td>\n",
-       "      <td>2.471286e+12</td>\n",
-       "      <td>2.586285e+12</td>\n",
-       "      <td>2.777535e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>448.153190</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>38</th>\n",
-       "      <td>China</td>\n",
-       "      <td>CHN</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>5.971647e+10</td>\n",
-       "      <td>5.005687e+10</td>\n",
-       "      <td>4.720936e+10</td>\n",
-       "      <td>5.070680e+10</td>\n",
-       "      <td>5.970834e+10</td>\n",
-       "      <td>7.043627e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>8.532231e+12</td>\n",
-       "      <td>9.570406e+12</td>\n",
-       "      <td>1.043853e+13</td>\n",
-       "      <td>1.101554e+13</td>\n",
-       "      <td>1.113795e+13</td>\n",
-       "      <td>1.214349e+13</td>\n",
-       "      <td>1.360815e+13</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>8999.962122</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>114</th>\n",
-       "      <td>Italy</td>\n",
-       "      <td>ITA</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>4.038529e+10</td>\n",
-       "      <td>4.484276e+10</td>\n",
-       "      <td>5.038389e+10</td>\n",
-       "      <td>5.771074e+10</td>\n",
-       "      <td>6.317542e+10</td>\n",
-       "      <td>6.797815e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.072823e+12</td>\n",
-       "      <td>2.130491e+12</td>\n",
-       "      <td>2.151733e+12</td>\n",
-       "      <td>1.832273e+12</td>\n",
-       "      <td>1.869202e+12</td>\n",
-       "      <td>1.946570e+12</td>\n",
-       "      <td>2.073902e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>560.438213</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>33</th>\n",
-       "      <td>Canada</td>\n",
-       "      <td>CAN</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>4.155599e+10</td>\n",
-       "      <td>4.286809e+10</td>\n",
-       "      <td>4.571315e+10</td>\n",
-       "      <td>5.012664e+10</td>\n",
-       "      <td>5.534224e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>1.823967e+12</td>\n",
-       "      <td>1.842018e+12</td>\n",
-       "      <td>1.801480e+12</td>\n",
-       "      <td>1.552900e+12</td>\n",
-       "      <td>1.526706e+12</td>\n",
-       "      <td>1.646867e+12</td>\n",
-       "      <td>1.712510e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>683.281146</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>152</th>\n",
-       "      <td>Mexico</td>\n",
-       "      <td>MEX</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.304000e+10</td>\n",
-       "      <td>1.416000e+10</td>\n",
-       "      <td>1.520000e+10</td>\n",
-       "      <td>1.696000e+10</td>\n",
-       "      <td>2.008000e+10</td>\n",
-       "      <td>2.184000e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>1.201090e+12</td>\n",
-       "      <td>1.274443e+12</td>\n",
-       "      <td>1.314564e+12</td>\n",
-       "      <td>1.170565e+12</td>\n",
-       "      <td>1.077828e+12</td>\n",
-       "      <td>1.158071e+12</td>\n",
-       "      <td>1.223809e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1093.959888</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>27</th>\n",
-       "      <td>Brazil</td>\n",
-       "      <td>BRA</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.516557e+10</td>\n",
-       "      <td>1.523685e+10</td>\n",
-       "      <td>1.992629e+10</td>\n",
-       "      <td>2.302148e+10</td>\n",
-       "      <td>2.121189e+10</td>\n",
-       "      <td>2.179004e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.465189e+12</td>\n",
-       "      <td>2.472806e+12</td>\n",
-       "      <td>2.455994e+12</td>\n",
-       "      <td>1.802214e+12</td>\n",
-       "      <td>1.796275e+12</td>\n",
-       "      <td>2.053595e+12</td>\n",
-       "      <td>1.868626e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>830.586548</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>68</th>\n",
-       "      <td>Spain</td>\n",
-       "      <td>ESP</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.207213e+10</td>\n",
-       "      <td>1.383430e+10</td>\n",
-       "      <td>1.613855e+10</td>\n",
-       "      <td>1.907491e+10</td>\n",
-       "      <td>2.134384e+10</td>\n",
-       "      <td>2.475696e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>1.336019e+12</td>\n",
-       "      <td>1.361854e+12</td>\n",
-       "      <td>1.376911e+12</td>\n",
-       "      <td>1.199084e+12</td>\n",
-       "      <td>1.237499e+12</td>\n",
-       "      <td>1.314314e+12</td>\n",
-       "      <td>1.426189e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>790.458368</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>124</th>\n",
-       "      <td>Korea, Rep.</td>\n",
-       "      <td>KOR</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>3.957240e+09</td>\n",
-       "      <td>2.417638e+09</td>\n",
-       "      <td>2.813857e+09</td>\n",
-       "      <td>3.988477e+09</td>\n",
-       "      <td>3.458565e+09</td>\n",
-       "      <td>3.120495e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>1.222807e+12</td>\n",
-       "      <td>1.305605e+12</td>\n",
-       "      <td>1.411334e+12</td>\n",
-       "      <td>1.382764e+12</td>\n",
-       "      <td>1.414804e+12</td>\n",
-       "      <td>1.530751e+12</td>\n",
-       "      <td>1.619424e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>3032.310031</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>107</th>\n",
-       "      <td>India</td>\n",
-       "      <td>IND</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>3.702988e+10</td>\n",
-       "      <td>3.923244e+10</td>\n",
-       "      <td>4.216148e+10</td>\n",
-       "      <td>4.842192e+10</td>\n",
-       "      <td>5.648029e+10</td>\n",
-       "      <td>5.955486e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>1.827638e+12</td>\n",
-       "      <td>1.856722e+12</td>\n",
-       "      <td>2.039127e+12</td>\n",
-       "      <td>2.103588e+12</td>\n",
-       "      <td>2.290432e+12</td>\n",
-       "      <td>2.652551e+12</td>\n",
-       "      <td>2.726323e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1885.664011</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>174</th>\n",
-       "      <td>Netherlands</td>\n",
-       "      <td>NLD</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.227673e+10</td>\n",
-       "      <td>1.349383e+10</td>\n",
-       "      <td>1.464706e+10</td>\n",
-       "      <td>1.589124e+10</td>\n",
-       "      <td>1.869938e+10</td>\n",
-       "      <td>2.100059e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>8.389713e+11</td>\n",
-       "      <td>8.769235e+11</td>\n",
-       "      <td>8.909813e+11</td>\n",
-       "      <td>7.652649e+11</td>\n",
-       "      <td>7.835282e+11</td>\n",
-       "      <td>8.318099e+11</td>\n",
-       "      <td>9.136585e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>486.205729</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>11</th>\n",
-       "      <td>Australia</td>\n",
-       "      <td>AUS</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.857767e+10</td>\n",
-       "      <td>1.965394e+10</td>\n",
-       "      <td>1.989249e+10</td>\n",
-       "      <td>2.150745e+10</td>\n",
-       "      <td>2.376414e+10</td>\n",
-       "      <td>2.593795e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>1.546152e+12</td>\n",
-       "      <td>1.576184e+12</td>\n",
-       "      <td>1.467484e+12</td>\n",
-       "      <td>1.351520e+12</td>\n",
-       "      <td>1.210028e+12</td>\n",
-       "      <td>1.330803e+12</td>\n",
-       "      <td>1.432195e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1110.240417</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>7</th>\n",
-       "      <td>Argentina</td>\n",
-       "      <td>ARG</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>2.445060e+10</td>\n",
-       "      <td>1.827212e+10</td>\n",
-       "      <td>2.560525e+10</td>\n",
-       "      <td>2.834471e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>5.459824e+11</td>\n",
-       "      <td>5.520251e+11</td>\n",
-       "      <td>5.263197e+11</td>\n",
-       "      <td>5.947493e+11</td>\n",
-       "      <td>5.575314e+11</td>\n",
-       "      <td>6.426959e+11</td>\n",
-       "      <td>5.184751e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>792.647234</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>242</th>\n",
-       "      <td>Turkey</td>\n",
-       "      <td>TUR</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.399507e+10</td>\n",
-       "      <td>7.988889e+09</td>\n",
-       "      <td>8.922222e+09</td>\n",
-       "      <td>1.035556e+10</td>\n",
-       "      <td>1.117778e+10</td>\n",
-       "      <td>1.196667e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>8.739822e+11</td>\n",
-       "      <td>9.505794e+11</td>\n",
-       "      <td>9.341859e+11</td>\n",
-       "      <td>8.597969e+11</td>\n",
-       "      <td>8.637216e+11</td>\n",
-       "      <td>8.515492e+11</td>\n",
-       "      <td>7.665091e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1076.583456</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>35</th>\n",
-       "      <td>Switzerland</td>\n",
-       "      <td>CHE</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>9.522747e+09</td>\n",
-       "      <td>1.071271e+10</td>\n",
-       "      <td>1.187998e+10</td>\n",
-       "      <td>1.306364e+10</td>\n",
-       "      <td>1.448056e+10</td>\n",
-       "      <td>1.534674e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>6.680436e+11</td>\n",
-       "      <td>6.885042e+11</td>\n",
-       "      <td>7.091826e+11</td>\n",
-       "      <td>6.798323e+11</td>\n",
-       "      <td>6.701811e+11</td>\n",
-       "      <td>6.789654e+11</td>\n",
-       "      <td>7.055013e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>221</th>\n",
-       "      <td>Sweden</td>\n",
-       "      <td>SWE</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.484287e+10</td>\n",
-       "      <td>1.614716e+10</td>\n",
-       "      <td>1.751148e+10</td>\n",
-       "      <td>1.895413e+10</td>\n",
-       "      <td>2.113724e+10</td>\n",
-       "      <td>2.326032e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>5.444815e+11</td>\n",
-       "      <td>5.793607e+11</td>\n",
-       "      <td>5.744131e+11</td>\n",
-       "      <td>4.981176e+11</td>\n",
-       "      <td>5.122052e+11</td>\n",
-       "      <td>5.356074e+11</td>\n",
-       "      <td>5.510317e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>434.541359</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>200</th>\n",
-       "      <td>Russian Federation</td>\n",
-       "      <td>RUS</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.210257e+12</td>\n",
-       "      <td>2.297128e+12</td>\n",
-       "      <td>2.059984e+12</td>\n",
-       "      <td>1.363594e+12</td>\n",
-       "      <td>1.282724e+12</td>\n",
-       "      <td>1.578624e+12</td>\n",
-       "      <td>1.657554e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>15</th>\n",
-       "      <td>Belgium</td>\n",
-       "      <td>BEL</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.165872e+10</td>\n",
-       "      <td>1.240015e+10</td>\n",
-       "      <td>1.326402e+10</td>\n",
-       "      <td>1.426002e+10</td>\n",
-       "      <td>1.596011e+10</td>\n",
-       "      <td>1.737146e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>4.978842e+11</td>\n",
-       "      <td>5.209255e+11</td>\n",
-       "      <td>5.308084e+11</td>\n",
-       "      <td>4.559403e+11</td>\n",
-       "      <td>4.696772e+11</td>\n",
-       "      <td>4.949017e+11</td>\n",
-       "      <td>5.317669e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>422.423521</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>12</th>\n",
-       "      <td>Austria</td>\n",
-       "      <td>AUT</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>6.592694e+09</td>\n",
-       "      <td>7.311750e+09</td>\n",
-       "      <td>7.756110e+09</td>\n",
-       "      <td>8.374175e+09</td>\n",
-       "      <td>9.169984e+09</td>\n",
-       "      <td>9.994071e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>4.094252e+11</td>\n",
-       "      <td>4.300687e+11</td>\n",
-       "      <td>4.419961e+11</td>\n",
-       "      <td>3.818057e+11</td>\n",
-       "      <td>3.940528e+11</td>\n",
-       "      <td>4.168360e+11</td>\n",
-       "      <td>4.557366e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>634.439955</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>203</th>\n",
-       "      <td>Saudi Arabia</td>\n",
-       "      <td>SAU</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>...</td>\n",
-       "      <td>7.359748e+11</td>\n",
-       "      <td>7.466471e+11</td>\n",
-       "      <td>7.563503e+11</td>\n",
-       "      <td>6.542699e+11</td>\n",
-       "      <td>6.449355e+11</td>\n",
-       "      <td>6.885861e+11</td>\n",
-       "      <td>7.824835e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>874.867536</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>188</th>\n",
-       "      <td>Poland</td>\n",
-       "      <td>POL</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>...</td>\n",
-       "      <td>5.003608e+11</td>\n",
-       "      <td>5.242343e+11</td>\n",
-       "      <td>5.453891e+11</td>\n",
-       "      <td>4.775774e+11</td>\n",
-       "      <td>4.720280e+11</td>\n",
-       "      <td>5.263710e+11</td>\n",
-       "      <td>5.857829e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>94</th>\n",
-       "      <td>Hong Kong SAR, China</td>\n",
-       "      <td>HKG</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.320797e+09</td>\n",
-       "      <td>1.383682e+09</td>\n",
-       "      <td>1.612346e+09</td>\n",
-       "      <td>1.935298e+09</td>\n",
-       "      <td>2.206466e+09</td>\n",
-       "      <td>2.435079e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.626294e+11</td>\n",
-       "      <td>2.756969e+11</td>\n",
-       "      <td>2.914594e+11</td>\n",
-       "      <td>3.093836e+11</td>\n",
-       "      <td>3.208607e+11</td>\n",
-       "      <td>3.416481e+11</td>\n",
-       "      <td>3.629925e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1881.940436</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>175</th>\n",
-       "      <td>Norway</td>\n",
-       "      <td>NOR</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>5.163272e+09</td>\n",
-       "      <td>5.632461e+09</td>\n",
-       "      <td>6.066977e+09</td>\n",
-       "      <td>6.510240e+09</td>\n",
-       "      <td>7.159203e+09</td>\n",
-       "      <td>8.058681e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>5.102291e+11</td>\n",
-       "      <td>5.235021e+11</td>\n",
-       "      <td>4.993385e+11</td>\n",
-       "      <td>3.866631e+11</td>\n",
-       "      <td>3.713448e+11</td>\n",
-       "      <td>3.994889e+11</td>\n",
-       "      <td>4.347509e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>834.484206</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>104</th>\n",
-       "      <td>Indonesia</td>\n",
-       "      <td>IDN</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>...</td>\n",
-       "      <td>9.178699e+11</td>\n",
-       "      <td>9.125241e+11</td>\n",
-       "      <td>8.908148e+11</td>\n",
-       "      <td>8.608542e+11</td>\n",
-       "      <td>9.318774e+11</td>\n",
-       "      <td>1.015423e+12</td>\n",
-       "      <td>1.042173e+12</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1925.378945</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>56</th>\n",
-       "      <td>Denmark</td>\n",
-       "      <td>DNK</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>6.248947e+09</td>\n",
-       "      <td>6.933842e+09</td>\n",
-       "      <td>7.812968e+09</td>\n",
-       "      <td>8.316692e+09</td>\n",
-       "      <td>9.506679e+09</td>\n",
-       "      <td>1.067890e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>3.271489e+11</td>\n",
-       "      <td>3.435844e+11</td>\n",
-       "      <td>3.529936e+11</td>\n",
-       "      <td>3.026731e+11</td>\n",
-       "      <td>3.119881e+11</td>\n",
-       "      <td>3.298656e+11</td>\n",
-       "      <td>3.520584e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>483.236102</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>261</th>\n",
-       "      <td>South Africa</td>\n",
-       "      <td>ZAF</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>7.575397e+09</td>\n",
-       "      <td>7.972997e+09</td>\n",
-       "      <td>8.497997e+09</td>\n",
-       "      <td>9.423396e+09</td>\n",
-       "      <td>1.037400e+10</td>\n",
-       "      <td>1.133440e+10</td>\n",
-       "      <td>...</td>\n",
-       "      <td>3.963294e+11</td>\n",
-       "      <td>3.666449e+11</td>\n",
-       "      <td>3.506376e+11</td>\n",
-       "      <td>3.174156e+11</td>\n",
-       "      <td>2.963409e+11</td>\n",
-       "      <td>3.492681e+11</td>\n",
-       "      <td>3.682882e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>687.960071</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>113</th>\n",
-       "      <td>Israel</td>\n",
-       "      <td>ISR</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>2.598500e+09</td>\n",
-       "      <td>3.138500e+09</td>\n",
-       "      <td>2.510000e+09</td>\n",
-       "      <td>2.992333e+09</td>\n",
-       "      <td>3.405333e+09</td>\n",
-       "      <td>3.663333e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.574350e+11</td>\n",
-       "      <td>2.929170e+11</td>\n",
-       "      <td>3.100079e+11</td>\n",
-       "      <td>3.004708e+11</td>\n",
-       "      <td>3.193779e+11</td>\n",
-       "      <td>3.532684e+11</td>\n",
-       "      <td>3.696904e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>2098.098544</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>87</th>\n",
-       "      <td>Greece</td>\n",
-       "      <td>GRC</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>4.446528e+09</td>\n",
-       "      <td>5.016049e+09</td>\n",
-       "      <td>5.327574e+09</td>\n",
-       "      <td>5.949478e+09</td>\n",
-       "      <td>6.680298e+09</td>\n",
-       "      <td>7.600579e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.456707e+11</td>\n",
-       "      <td>2.398620e+11</td>\n",
-       "      <td>2.370296e+11</td>\n",
-       "      <td>1.965914e+11</td>\n",
-       "      <td>1.952224e+11</td>\n",
-       "      <td>2.030856e+11</td>\n",
-       "      <td>2.180318e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>392.502471</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>231</th>\n",
-       "      <td>Thailand</td>\n",
-       "      <td>THA</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>2.760747e+09</td>\n",
-       "      <td>3.034044e+09</td>\n",
-       "      <td>3.308913e+09</td>\n",
-       "      <td>3.540403e+09</td>\n",
-       "      <td>3.889130e+09</td>\n",
-       "      <td>4.388938e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>3.975581e+11</td>\n",
-       "      <td>4.203333e+11</td>\n",
-       "      <td>4.073394e+11</td>\n",
-       "      <td>4.012960e+11</td>\n",
-       "      <td>4.123528e+11</td>\n",
-       "      <td>4.552755e+11</td>\n",
-       "      <td>5.049928e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>2003.560625</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>73</th>\n",
-       "      <td>Finland</td>\n",
-       "      <td>FIN</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>5.224102e+09</td>\n",
-       "      <td>5.921659e+09</td>\n",
-       "      <td>6.340581e+09</td>\n",
-       "      <td>6.885920e+09</td>\n",
-       "      <td>7.766655e+09</td>\n",
-       "      <td>8.589340e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.567065e+11</td>\n",
-       "      <td>2.699801e+11</td>\n",
-       "      <td>2.726093e+11</td>\n",
-       "      <td>2.328508e+11</td>\n",
-       "      <td>2.390095e+11</td>\n",
-       "      <td>2.523311e+11</td>\n",
-       "      <td>2.739610e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>655.065126</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>192</th>\n",
-       "      <td>Portugal</td>\n",
-       "      <td>PRT</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>3.193200e+09</td>\n",
-       "      <td>3.417517e+09</td>\n",
-       "      <td>3.668222e+09</td>\n",
-       "      <td>3.905734e+09</td>\n",
-       "      <td>4.235608e+09</td>\n",
-       "      <td>4.687464e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.163682e+11</td>\n",
-       "      <td>2.260735e+11</td>\n",
-       "      <td>2.296298e+11</td>\n",
-       "      <td>1.994203e+11</td>\n",
-       "      <td>2.062757e+11</td>\n",
-       "      <td>2.193081e+11</td>\n",
-       "      <td>2.379789e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>913.110689</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>252</th>\n",
-       "      <td>Venezuela, RB</td>\n",
-       "      <td>VEN</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>7.779091e+09</td>\n",
-       "      <td>8.189091e+09</td>\n",
-       "      <td>8.946970e+09</td>\n",
-       "      <td>9.753333e+09</td>\n",
-       "      <td>8.099318e+09</td>\n",
-       "      <td>8.427778e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>3.812862e+11</td>\n",
-       "      <td>3.710054e+11</td>\n",
-       "      <td>4.823593e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>110</th>\n",
-       "      <td>Iran, Islamic Rep.</td>\n",
-       "      <td>IRN</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>4.199134e+09</td>\n",
-       "      <td>4.426949e+09</td>\n",
-       "      <td>4.693566e+09</td>\n",
-       "      <td>4.928628e+09</td>\n",
-       "      <td>5.379846e+09</td>\n",
-       "      <td>6.197320e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>5.988534e+11</td>\n",
-       "      <td>4.674149e+11</td>\n",
-       "      <td>4.344746e+11</td>\n",
-       "      <td>3.858745e+11</td>\n",
-       "      <td>4.189767e+11</td>\n",
-       "      <td>4.540128e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>6</th>\n",
-       "      <td>United Arab Emirates</td>\n",
-       "      <td>ARE</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>...</td>\n",
-       "      <td>3.745906e+11</td>\n",
-       "      <td>3.901076e+11</td>\n",
-       "      <td>4.031371e+11</td>\n",
-       "      <td>3.581351e+11</td>\n",
-       "      <td>3.570451e+11</td>\n",
-       "      <td>3.825751e+11</td>\n",
-       "      <td>4.141789e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1642.016435</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>43</th>\n",
-       "      <td>Colombia</td>\n",
-       "      <td>COL</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>4.031153e+09</td>\n",
-       "      <td>4.540448e+09</td>\n",
-       "      <td>4.955544e+09</td>\n",
-       "      <td>4.836167e+09</td>\n",
-       "      <td>5.973367e+09</td>\n",
-       "      <td>5.760762e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>3.705744e+11</td>\n",
-       "      <td>3.818666e+11</td>\n",
-       "      <td>3.811121e+11</td>\n",
-       "      <td>2.934817e+11</td>\n",
-       "      <td>2.828250e+11</td>\n",
-       "      <td>3.117899e+11</td>\n",
-       "      <td>3.302279e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1319.509947</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>109</th>\n",
-       "      <td>Ireland</td>\n",
-       "      <td>IRL</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>1.939330e+09</td>\n",
-       "      <td>2.088012e+09</td>\n",
-       "      <td>2.260350e+09</td>\n",
-       "      <td>2.430844e+09</td>\n",
-       "      <td>2.766609e+09</td>\n",
-       "      <td>2.945704e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.249995e+11</td>\n",
-       "      <td>2.385435e+11</td>\n",
-       "      <td>2.584719e+11</td>\n",
-       "      <td>2.914998e+11</td>\n",
-       "      <td>3.005233e+11</td>\n",
-       "      <td>3.348340e+11</td>\n",
-       "      <td>3.824875e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>2508.069947</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>65</th>\n",
-       "      <td>Egypt, Arab Rep.</td>\n",
-       "      <td>EGY</td>\n",
-       "      <td>GDP (current US$)</td>\n",
-       "      <td>NY.GDP.MKTP.CD</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>4.948668e+09</td>\n",
-       "      <td>...</td>\n",
-       "      <td>2.793728e+11</td>\n",
-       "      <td>2.885862e+11</td>\n",
-       "      <td>3.055297e+11</td>\n",
-       "      <td>3.326980e+11</td>\n",
-       "      <td>3.329278e+11</td>\n",
-       "      <td>2.353691e+11</td>\n",
-       "      <td>2.508955e+11</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>NaN</td>\n",
-       "      <td>1593.900098</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "<p>40 rows × 66 columns</p>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "             Country Name Country Code     Indicator Name  Indicator Code  \\\n",
-       "249         United States          USA  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "117                 Japan          JPN  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "53                Germany          DEU  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "79         United Kingdom          GBR  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "75                 France          FRA  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "38                  China          CHN  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "114                 Italy          ITA  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "33                 Canada          CAN  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "152                Mexico          MEX  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "27                 Brazil          BRA  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "68                  Spain          ESP  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "124           Korea, Rep.          KOR  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "107                 India          IND  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "174           Netherlands          NLD  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "11              Australia          AUS  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "7               Argentina          ARG  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "242                Turkey          TUR  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "35            Switzerland          CHE  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "221                Sweden          SWE  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "200    Russian Federation          RUS  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "15                Belgium          BEL  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "12                Austria          AUT  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "203          Saudi Arabia          SAU  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "188                Poland          POL  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "94   Hong Kong SAR, China          HKG  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "175                Norway          NOR  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "104             Indonesia          IDN  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "56                Denmark          DNK  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "261          South Africa          ZAF  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "113                Israel          ISR  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "87                 Greece          GRC  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "231              Thailand          THA  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "73                Finland          FIN  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "192              Portugal          PRT  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "252         Venezuela, RB          VEN  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "110    Iran, Islamic Rep.          IRN  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "6    United Arab Emirates          ARE  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "43               Colombia          COL  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "109               Ireland          IRL  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "65       Egypt, Arab Rep.          EGY  GDP (current US$)  NY.GDP.MKTP.CD   \n",
-       "\n",
-       "             1960          1961          1962          1963          1964  \\\n",
-       "249  5.433000e+11  5.633000e+11  6.051000e+11  6.386000e+11  6.858000e+11   \n",
-       "117  4.430734e+10  5.350862e+10  6.072302e+10  6.949813e+10  8.174901e+10   \n",
-       "53            NaN           NaN           NaN           NaN           NaN   \n",
-       "79   7.232805e+10  7.669436e+10  8.060194e+10  8.544377e+10  9.338760e+10   \n",
-       "75   6.265147e+10  6.834674e+10  7.631378e+10  8.555111e+10  9.490659e+10   \n",
-       "38   5.971647e+10  5.005687e+10  4.720936e+10  5.070680e+10  5.970834e+10   \n",
-       "114  4.038529e+10  4.484276e+10  5.038389e+10  5.771074e+10  6.317542e+10   \n",
-       "33            NaN  4.155599e+10  4.286809e+10  4.571315e+10  5.012664e+10   \n",
-       "152  1.304000e+10  1.416000e+10  1.520000e+10  1.696000e+10  2.008000e+10   \n",
-       "27   1.516557e+10  1.523685e+10  1.992629e+10  2.302148e+10  2.121189e+10   \n",
-       "68   1.207213e+10  1.383430e+10  1.613855e+10  1.907491e+10  2.134384e+10   \n",
-       "124  3.957240e+09  2.417638e+09  2.813857e+09  3.988477e+09  3.458565e+09   \n",
-       "107  3.702988e+10  3.923244e+10  4.216148e+10  4.842192e+10  5.648029e+10   \n",
-       "174  1.227673e+10  1.349383e+10  1.464706e+10  1.589124e+10  1.869938e+10   \n",
-       "11   1.857767e+10  1.965394e+10  1.989249e+10  2.150745e+10  2.376414e+10   \n",
-       "7             NaN           NaN  2.445060e+10  1.827212e+10  2.560525e+10   \n",
-       "242  1.399507e+10  7.988889e+09  8.922222e+09  1.035556e+10  1.117778e+10   \n",
-       "35   9.522747e+09  1.071271e+10  1.187998e+10  1.306364e+10  1.448056e+10   \n",
-       "221  1.484287e+10  1.614716e+10  1.751148e+10  1.895413e+10  2.113724e+10   \n",
-       "200           NaN           NaN           NaN           NaN           NaN   \n",
-       "15   1.165872e+10  1.240015e+10  1.326402e+10  1.426002e+10  1.596011e+10   \n",
-       "12   6.592694e+09  7.311750e+09  7.756110e+09  8.374175e+09  9.169984e+09   \n",
-       "203           NaN           NaN           NaN           NaN           NaN   \n",
-       "188           NaN           NaN           NaN           NaN           NaN   \n",
-       "94   1.320797e+09  1.383682e+09  1.612346e+09  1.935298e+09  2.206466e+09   \n",
-       "175  5.163272e+09  5.632461e+09  6.066977e+09  6.510240e+09  7.159203e+09   \n",
-       "104           NaN           NaN           NaN           NaN           NaN   \n",
-       "56   6.248947e+09  6.933842e+09  7.812968e+09  8.316692e+09  9.506679e+09   \n",
-       "261  7.575397e+09  7.972997e+09  8.497997e+09  9.423396e+09  1.037400e+10   \n",
-       "113  2.598500e+09  3.138500e+09  2.510000e+09  2.992333e+09  3.405333e+09   \n",
-       "87   4.446528e+09  5.016049e+09  5.327574e+09  5.949478e+09  6.680298e+09   \n",
-       "231  2.760747e+09  3.034044e+09  3.308913e+09  3.540403e+09  3.889130e+09   \n",
-       "73   5.224102e+09  5.921659e+09  6.340581e+09  6.885920e+09  7.766655e+09   \n",
-       "192  3.193200e+09  3.417517e+09  3.668222e+09  3.905734e+09  4.235608e+09   \n",
-       "252  7.779091e+09  8.189091e+09  8.946970e+09  9.753333e+09  8.099318e+09   \n",
-       "110  4.199134e+09  4.426949e+09  4.693566e+09  4.928628e+09  5.379846e+09   \n",
-       "6             NaN           NaN           NaN           NaN           NaN   \n",
-       "43   4.031153e+09  4.540448e+09  4.955544e+09  4.836167e+09  5.973367e+09   \n",
-       "109  1.939330e+09  2.088012e+09  2.260350e+09  2.430844e+09  2.766609e+09   \n",
-       "65            NaN           NaN           NaN           NaN           NaN   \n",
-       "\n",
-       "             1965  ...          2012          2013          2014  \\\n",
-       "249  7.437000e+11  ...  1.619701e+13  1.678485e+13  1.752175e+13   \n",
-       "117  9.095028e+10  ...  6.203213e+12  5.155717e+12  4.850414e+12   \n",
-       "53            NaN  ...  3.543984e+12  3.752514e+12  3.898727e+12   \n",
-       "79   1.005958e+11  ...  2.676605e+12  2.753565e+12  3.034729e+12   \n",
-       "75   1.021606e+11  ...  2.683825e+12  2.811078e+12  2.852166e+12   \n",
-       "38   7.043627e+10  ...  8.532231e+12  9.570406e+12  1.043853e+13   \n",
-       "114  6.797815e+10  ...  2.072823e+12  2.130491e+12  2.151733e+12   \n",
-       "33   5.534224e+10  ...  1.823967e+12  1.842018e+12  1.801480e+12   \n",
-       "152  2.184000e+10  ...  1.201090e+12  1.274443e+12  1.314564e+12   \n",
-       "27   2.179004e+10  ...  2.465189e+12  2.472806e+12  2.455994e+12   \n",
-       "68   2.475696e+10  ...  1.336019e+12  1.361854e+12  1.376911e+12   \n",
-       "124  3.120495e+09  ...  1.222807e+12  1.305605e+12  1.411334e+12   \n",
-       "107  5.955486e+10  ...  1.827638e+12  1.856722e+12  2.039127e+12   \n",
-       "174  2.100059e+10  ...  8.389713e+11  8.769235e+11  8.909813e+11   \n",
-       "11   2.593795e+10  ...  1.546152e+12  1.576184e+12  1.467484e+12   \n",
-       "7    2.834471e+10  ...  5.459824e+11  5.520251e+11  5.263197e+11   \n",
-       "242  1.196667e+10  ...  8.739822e+11  9.505794e+11  9.341859e+11   \n",
-       "35   1.534674e+10  ...  6.680436e+11  6.885042e+11  7.091826e+11   \n",
-       "221  2.326032e+10  ...  5.444815e+11  5.793607e+11  5.744131e+11   \n",
-       "200           NaN  ...  2.210257e+12  2.297128e+12  2.059984e+12   \n",
-       "15   1.737146e+10  ...  4.978842e+11  5.209255e+11  5.308084e+11   \n",
-       "12   9.994071e+09  ...  4.094252e+11  4.300687e+11  4.419961e+11   \n",
-       "203           NaN  ...  7.359748e+11  7.466471e+11  7.563503e+11   \n",
-       "188           NaN  ...  5.003608e+11  5.242343e+11  5.453891e+11   \n",
-       "94   2.435079e+09  ...  2.626294e+11  2.756969e+11  2.914594e+11   \n",
-       "175  8.058681e+09  ...  5.102291e+11  5.235021e+11  4.993385e+11   \n",
-       "104           NaN  ...  9.178699e+11  9.125241e+11  8.908148e+11   \n",
-       "56   1.067890e+10  ...  3.271489e+11  3.435844e+11  3.529936e+11   \n",
-       "261  1.133440e+10  ...  3.963294e+11  3.666449e+11  3.506376e+11   \n",
-       "113  3.663333e+09  ...  2.574350e+11  2.929170e+11  3.100079e+11   \n",
-       "87   7.600579e+09  ...  2.456707e+11  2.398620e+11  2.370296e+11   \n",
-       "231  4.388938e+09  ...  3.975581e+11  4.203333e+11  4.073394e+11   \n",
-       "73   8.589340e+09  ...  2.567065e+11  2.699801e+11  2.726093e+11   \n",
-       "192  4.687464e+09  ...  2.163682e+11  2.260735e+11  2.296298e+11   \n",
-       "252  8.427778e+09  ...  3.812862e+11  3.710054e+11  4.823593e+11   \n",
-       "110  6.197320e+09  ...  5.988534e+11  4.674149e+11  4.344746e+11   \n",
-       "6             NaN  ...  3.745906e+11  3.901076e+11  4.031371e+11   \n",
-       "43   5.760762e+09  ...  3.705744e+11  3.818666e+11  3.811121e+11   \n",
-       "109  2.945704e+09  ...  2.249995e+11  2.385435e+11  2.584719e+11   \n",
-       "65   4.948668e+09  ...  2.793728e+11  2.885862e+11  3.055297e+11   \n",
-       "\n",
-       "             2015          2016          2017          2018  2019  \\\n",
-       "249  1.821930e+13  1.870719e+13  1.948539e+13  2.049410e+13   NaN   \n",
-       "117  4.389476e+12  4.926667e+12  4.859951e+12  4.970916e+12   NaN   \n",
-       "53   3.381389e+12  3.495163e+12  3.693204e+12  3.996759e+12   NaN   \n",
-       "79   2.896421e+12  2.659239e+12  2.637866e+12  2.825208e+12   NaN   \n",
-       "75   2.438208e+12  2.471286e+12  2.586285e+12  2.777535e+12   NaN   \n",
-       "38   1.101554e+13  1.113795e+13  1.214349e+13  1.360815e+13   NaN   \n",
-       "114  1.832273e+12  1.869202e+12  1.946570e+12  2.073902e+12   NaN   \n",
-       "33   1.552900e+12  1.526706e+12  1.646867e+12  1.712510e+12   NaN   \n",
-       "152  1.170565e+12  1.077828e+12  1.158071e+12  1.223809e+12   NaN   \n",
-       "27   1.802214e+12  1.796275e+12  2.053595e+12  1.868626e+12   NaN   \n",
-       "68   1.199084e+12  1.237499e+12  1.314314e+12  1.426189e+12   NaN   \n",
-       "124  1.382764e+12  1.414804e+12  1.530751e+12  1.619424e+12   NaN   \n",
-       "107  2.103588e+12  2.290432e+12  2.652551e+12  2.726323e+12   NaN   \n",
-       "174  7.652649e+11  7.835282e+11  8.318099e+11  9.136585e+11   NaN   \n",
-       "11   1.351520e+12  1.210028e+12  1.330803e+12  1.432195e+12   NaN   \n",
-       "7    5.947493e+11  5.575314e+11  6.426959e+11  5.184751e+11   NaN   \n",
-       "242  8.597969e+11  8.637216e+11  8.515492e+11  7.665091e+11   NaN   \n",
-       "35   6.798323e+11  6.701811e+11  6.789654e+11  7.055013e+11   NaN   \n",
-       "221  4.981176e+11  5.122052e+11  5.356074e+11  5.510317e+11   NaN   \n",
-       "200  1.363594e+12  1.282724e+12  1.578624e+12  1.657554e+12   NaN   \n",
-       "15   4.559403e+11  4.696772e+11  4.949017e+11  5.317669e+11   NaN   \n",
-       "12   3.818057e+11  3.940528e+11  4.168360e+11  4.557366e+11   NaN   \n",
-       "203  6.542699e+11  6.449355e+11  6.885861e+11  7.824835e+11   NaN   \n",
-       "188  4.775774e+11  4.720280e+11  5.263710e+11  5.857829e+11   NaN   \n",
-       "94   3.093836e+11  3.208607e+11  3.416481e+11  3.629925e+11   NaN   \n",
-       "175  3.866631e+11  3.713448e+11  3.994889e+11  4.347509e+11   NaN   \n",
-       "104  8.608542e+11  9.318774e+11  1.015423e+12  1.042173e+12   NaN   \n",
-       "56   3.026731e+11  3.119881e+11  3.298656e+11  3.520584e+11   NaN   \n",
-       "261  3.174156e+11  2.963409e+11  3.492681e+11  3.682882e+11   NaN   \n",
-       "113  3.004708e+11  3.193779e+11  3.532684e+11  3.696904e+11   NaN   \n",
-       "87   1.965914e+11  1.952224e+11  2.030856e+11  2.180318e+11   NaN   \n",
-       "231  4.012960e+11  4.123528e+11  4.552755e+11  5.049928e+11   NaN   \n",
-       "73   2.328508e+11  2.390095e+11  2.523311e+11  2.739610e+11   NaN   \n",
-       "192  1.994203e+11  2.062757e+11  2.193081e+11  2.379789e+11   NaN   \n",
-       "252           NaN           NaN           NaN           NaN   NaN   \n",
-       "110  3.858745e+11  4.189767e+11  4.540128e+11           NaN   NaN   \n",
-       "6    3.581351e+11  3.570451e+11  3.825751e+11  4.141789e+11   NaN   \n",
-       "43   2.934817e+11  2.828250e+11  3.117899e+11  3.302279e+11   NaN   \n",
-       "109  2.914998e+11  3.005233e+11  3.348340e+11  3.824875e+11   NaN   \n",
-       "65   3.326980e+11  3.329278e+11  2.353691e+11  2.508955e+11   NaN   \n",
-       "\n",
-       "     Unnamed: 64  increaseRate2013-2018  \n",
-       "249          NaN             771.496373  \n",
-       "117          NaN             390.415929  \n",
-       "53           NaN             441.809779  \n",
-       "79           NaN             741.128517  \n",
-       "75           NaN             448.153190  \n",
-       "38           NaN            8999.962122  \n",
-       "114          NaN             560.438213  \n",
-       "33           NaN             683.281146  \n",
-       "152          NaN            1093.959888  \n",
-       "27           NaN             830.586548  \n",
-       "68           NaN             790.458368  \n",
-       "124          NaN            3032.310031  \n",
-       "107          NaN            1885.664011  \n",
-       "174          NaN             486.205729  \n",
-       "11           NaN            1110.240417  \n",
-       "7            NaN             792.647234  \n",
-       "242          NaN            1076.583456  \n",
-       "35           NaN                    NaN  \n",
-       "221          NaN             434.541359  \n",
-       "200          NaN                    NaN  \n",
-       "15           NaN             422.423521  \n",
-       "12           NaN             634.439955  \n",
-       "203          NaN             874.867536  \n",
-       "188          NaN                    NaN  \n",
-       "94           NaN            1881.940436  \n",
-       "175          NaN             834.484206  \n",
-       "104          NaN            1925.378945  \n",
-       "56           NaN             483.236102  \n",
-       "261          NaN             687.960071  \n",
-       "113          NaN            2098.098544  \n",
-       "87           NaN             392.502471  \n",
-       "231          NaN            2003.560625  \n",
-       "73           NaN             655.065126  \n",
-       "192          NaN             913.110689  \n",
-       "252          NaN                    NaN  \n",
-       "110          NaN                    NaN  \n",
-       "6            NaN            1642.016435  \n",
-       "43           NaN            1319.509947  \n",
-       "109          NaN            2508.069947  \n",
-       "65           NaN            1593.900098  \n",
-       "\n",
-       "[40 rows x 66 columns]"
-      ]
-     },
-     "execution_count": 232,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "\n",
-    "pd.set_option('display.max_rows',40)\n",
-    "df.iloc[0:40,]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 253,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.axes._subplots.AxesSubplot at 0x1aa22e7c18>"
-      ]
-     },
-     "execution_count": 253,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABvMAAAHeCAYAAACmBvcgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde5iWdZ0/8PcMc+LgCfMYqIAnpCWkFF1XhWp3W8xjK5nuVOpq4GKGWkKIy0aeAlfxkIqiKKIpZKVhXZplilcSa5qWYxxcTJZwlChFZQ7M8/vDX+OSIrLBPLfD6/XX89zPfXjfz8z1/ed9fe6nolQqlQIAAAAAAAAUTmW5AwAAAAAAAADvTJkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFBV5Q7AW375y1+ma9eu5Y4BsEk1NTWltra23DEANilrG9AZWduAzsjaBnRG1rbOq6mpKYMGDXrbdmVegVRUVKR///7ljgGwSTU0NFjbgE7H2gZ0RtY2oDOytgGdkbWt82poaHjH7R6zCQAAAAAAAAWlzAMAAAAAAICCqiiVSqVyh+BNv/nNbzJgwIByxwAAAAAAANhoTS1rU1vdpdwx3rfW9whVv5lXIJWVlfnIV24tdwwAAAAAAICN9vjkz5U7QqfkMZsAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACqqsZd78+fMzZsyYdbZNmTIld99993qPmTZtWp566qk0NTVl9uzZ7/laY8aMyfz589fZtmbNmowdOzannHJKTj311Jx11llZtWpVkuSBBx7Iiy++uN7z/fGPf8y99977nq8PAAAAAAAAG+t9N5l3+umnZ+DAgXnppZc2qsx7J9/5znfygQ98IDfddFOmT5+e/fffP9dcc02S5NZbb83q1avXe+xvf/vb/OQnP/mrrg8AAAAAAADvpqrcAdZn/vz5ueGGG1JdXZ1ly5Zl+PDhGTVqVMaOHZvhw4fn/vvvz+LFi3P11Vfn85//fMaPH98+VXf++ednn332yaxZszJ79uzssMMOWbly5duu8cEPfjBz5szJ4MGDc+CBB6a+vj6lUikPPfRQGhoact555+X222/PVVddlV//+td57bXX0q9fv1x88cW57rrr8uyzz+bOO+/MYYcdlgkTJqSpqSm1tbWZNGlSevbsmbPOOiurV6/OmjVr8pWvfCVDhgzp6K8RAAAAAACA97FClnkVFRVJkuXLl+eee+5Jc3NzDj300IwaNap9n5EjR2bhwoUZPXp0Jk+enIMOOignnnhili5dmnHjxmXatGm59dZbc++996aioiLHHXfc264zdOjQNDc3Z86cORk3blz23nvvnH/++Rk6dGj69++fiRMnprm5OVtvvXVuvvnmtLW15YgjjsiLL76YkSNH5tvf/nY+85nP5Mtf/nLq6+tz+OGH5+c//3mmTJmSkSNH5uWXX86MGTOycuXKLF26tKO+PgAAAAAAADqJspZ5dXV1aW5uXmfb66+/ntra2iTJ3nvvnaqqqlRVVaWurm6951m4cGEee+yx/PCHP0ySvPLKK3nuueey5557pqamJkkycODAtx33xBNP5OCDD84//MM/ZO3atfn+97+fcePGrfObfbW1tfnDH/6Qs88+O926dcvrr7+elpaWt13/+uuvz4033phSqZTq6urstddeOemkk3L22WentbU19fX1/7cvCQAAAAAAgC1WWcu8fv36paGhIY2Njdlxxx3T1NSUBQsW5POf/3xWrFjRPqH3TiorK9PW1pYk6du3b4466qgceeSRWblyZWbPnp3evXtn8eLFWbNmTaqrq9PQ0JCjjjpqnXPMnTs33bt3z5gxY9KlS5fss88+7eVfRUVFSqVSHn744fz+97/PFVdckT/84Q954IEHUiqV3nb9U045JYMHD86SJUuyYMGC/Pa3v81rr72WadOmpbGxMSeccEKGDRu2mb5JAAAAAAAAOqOylnk9evTI2LFj88UvfjF1dXVpaWlJfX19dt9996xYseJdj91+++3T0tKSyZMnZ+TIkRk/fnzuuuuurF69OqNHj27/zboTTjghPXv2TNeuXd92ji9/+cuZNGlSjj766HTt2jXdunXLhRdemCTZf//989WvfjXXXnttvvWtb2XEiBGpqalJ796909jYmN122y0LFy7MjBkzct5552XixIlpamrKmjVrMn78+Oyxxx655ppr8r3vfS/V1dX50pe+tFm+QwAAAAAAADqvilKpVCp3CN7U0NCQf7lpQbljAAAAAAAAbLTHJ3+u3BHe1xoaGtK/f/+3ba8sQxYAAAAAAADgPVDmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACioqnIH4C1tbW15fPLnyh0DAAAAAABgozW1rE1tdZdyx+h0TOYVSHNzc7kjAGxyDQ0N5Y4AsMlZ24DOyNoGdEbWNqAzKvLapsjbPJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCUuYBAAAAAABAQSnzCqS2pqbcEQA2uf79+5c7AsAmZ23jvSi1NpU7AgAAAJ1AVbkD8JaKysr87ut/U+4YAADAJrDbBU+XOwIAAACdgMk8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACkqZBwAAAAAAAAWlzPsL9fX1WbJkSbljAAAAAAAAgDIPAAAAAAAAiqqq3AGKaNWqVRk5cmSampryxz/+Mf/2b/+WT3ziExk+fHg++tGPZtGiRdlmm23yn//5n2lra8v48ePz6quvZtWqVTn++ONz4oknpr6+Pvvuu28WLVqU1atXZ+rUqfngBz9Y7lsDAAAAAADgfcRk3jt49tlnc/LJJ+fmm2/OhAkTMmvWrCTJmjVrcuSRR+aOO+5I3759c+edd+b555/PEUcckZtuuinXXXddZsyY0X6egQMHZsaMGTnkkEMyd+7cMt0NAAAAAAAA71cm85K89tprqampSXV1dZLkox/9aKZNm5Y5c+akoqIira2tSZKqqqoccMABSZLBgwfn4YcfzvDhw3PLLbfk/vvvT48ePdr3TZL99tsvSbLzzjvn5Zdf7uC7AgAAAAAA4P3OZF6SsWPH5vHHH09bW1tWrlyZiy66KEcffXQmT56cIUOGpFQqJUlaW1vz7LPPJkkef/zx7LnnnrnpppsyaNCgTJkyJZ/85Cfb9wUAAAAAAIC/lsm8JCeffHK+8Y1vpLa2Nscee2x22WWXXHjhhbn++uuzyy67ZNWqVe373nDDDVm+fHl23XXXjBkzJr/85S8zceLE3Hvvvdl2223TpUuXNDc3l/FuAAAAAAAA6CwqSkbJ3rOPfexj+eEPf5ja2trNcv6GhoZ0nz1is5wbAADoWLtd8HS5I8BGaWhoSP/+/csdA2CTsrYBnZG1rfNa39/WYzYBAAAAAACgoDxmcyP85Cc/KXcEAAAAAAAAtiAm8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACioqnIH4C2ltrbsdsHT5Y4BAABsAqXWplRU1ZY7BgAAAO9zJvMKpKm5udwRADa5hoaGckcA2OSsbbwXijwAAAA2BWUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkFUlNTU+4IAButqbWp3BEAAAAAADqtqnIH4C2VlZU55KpDyh0DYKM8euaj5Y4AAAAAANBpmcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFBV5Q6wqb3wwguZPHlyVqxYkbq6utTV1eUrX/lK9tprr3JHAwAAAAAAgI3Sqcq8N954I6NGjcqkSZOy//77J0meeuqpfP3rX8/MmTPLnA4AAAAAAAA2Tqcq837605/moIMOai/ykmTgwIG59dZb8/vf/z4TJkxIU1NTamtrM2nSpKxduzajRo3Ktttum8MOOywPP/xw9tlnnyxatCjdunXLRz/60cybNy+vvPJKbrrppnTp0iXjx4/Pq6++mlWrVuX444/PiSeemPr6+uy7775ZtGhRVq9enalTp2bevHlZunRpzjvvvKxduzbHHHNMvvOd76SmpqaM3xAAAAAAAADvJ53qN/OWLVuW3Xbbrf39qFGjUl9fn09+8pMZO3Zs6uvrM3PmzJx66qmZMmVKkuSll17K9OnTc9pppyV5s/y75ZZb0tzcnLq6utx8883Zc889s2DBgjz//PM54ogjctNNN+W6667LjBkz2q81cODAzJgxI4ccckjmzp2bI444Ig8++GDWrl2bRx55JEOGDFHkAQAAAAAAsFE61WTezjvvnF//+tft76+99tokyYgRI/Lkk0/m+uuvz4033phSqZTq6uokSa9evdYp2QYMGJAk2XrrrbPnnnu2v25qasoHPvCB3HLLLbn//vvTo0ePtLa2th+33377tWd4+eWX06NHjxxwwAGZN29e7r777pxxxhmb9+YBAAAAAADodDpVmffxj388N9xwQ5588skMGjQoSfL8889nxYoVGThwYMaMGZPBgwdnyZIlWbBgQZKksvK9DyfedNNNGTRoUE488cQ89thj+dnPfvau+48YMSI33HBDVq1alX333ff/fmMAAAAAAABskTpVmde9e/dce+21ueyyyzJlypS0tramqqoqkyZNSt++fTNx4sQ0NTVlzZo1GT9+/Eaff9iwYZk4cWLuvffebLvttunSpUuam5vXu/+HP/zhPP/88znppJP+mtsCAAAAAABgC1VRKpVK5Q7RWbW1teWzn/1spk+fnh49emxw/4aGhvzrj/+1A5IBbDqPnvnou37e0NCQ/v37d1AagI5hbQM6I2sb0BlZ24DOyNrWea3vb/venzHJRnnhhRdy7LHH5uijj35PRR4AAAAAAAD8pU71mM0i6d27d77//e+XOwYAAAAAAADvYybzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKKiqcgfgLW1tbXn0zEfLHQNgozS1NqW2qrbcMQAAAAAAOiWTeQXS3Nxc7ggAG02RBwAAAACw+SjzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmFUhtTU25IwBl0tbUVO4IAAAAAAAUUFW5A/CWisrK/Oyww8sdAyiDwx/+WbkjAAAAAABQQCbzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABTUJi/z5s+fnzFjxqyzbcqUKbn77rvXe8y0adPy1FNPpampKbNnz37P1xozZkzmz5+/zrarrroqd9xxR/v7iy++OGeccUaam5szevTo93zud7JkyZLU19f/VecAAAAAAACA96oQk3mnn356Bg4cmJdeemmjyrx3UyqVMmnSpKxcuTJXXnllampqcvXVV2+ScwMAAAAAAEBHqOrIi82fPz833HBDqqurs2zZsgwfPjyjRo3K2LFjM3z48Nx///1ZvHhxrr766nz+85/P+PHjs2rVqiTJ+eefn3322SezZs3K7Nmzs8MOO2TlypXveJ1SqZR///d/T2tra775zW+msvLNzvKQQw7Jo48+mvr6+uy7775ZtGhRVq9enalTp+aDH/xgrrnmmvz4xz9Oz54988Ybb+Sss85Knz59cu6556ZUKmWHHXZov8ajjz6aK664IrW1tdl2221z0UUXpaGhIdOmTUt1dXVWrFiRE044IY899lieffbZfO5zn8uJJ564+b9kAAAAAAAAOo0OK/MqKiqSJMuXL88999yT5ubmHHrooRk1alT7PiNHjszChQszevToTJ48OQcddFBOPPHELF26NOPGjcu0adNy66235t57701FRUWOO+64d7zW9ddfnz59+qRLly7t1/1LAwcOzPjx43P55Zdn7ty5Oeyww/LII49kzpw5aWlpyZFHHpkkufnmm/OpT30qI0aMyH333Zc77rgjpVIpEyZMyB133JGddtopt9xyS6699toMHTo0K1asyPe+97385je/yVlnnZUHHnggL774YkaPHq3MAwAAAAAAYKNs8sds1tXVpbm5eZ1tr7/+empra5Mke++9d6qqqtKtW7fU1dWt9zwLFy7Md77zndTX12fChAl55ZVX8txzz2XPPfdMTU1NqqurM3DgwHc89uMf/3hmzJiR7t2759prr33Hffbbb78kyc4775ympqYsWbIkf/M3f5MuXbqkrq4uH/rQh5IkixYtar/O4MGDkySrVq1Kjx49stNOOyVJDjjggCxatChJstdee6W6ujpbbbVVdtttt9TU1GSbbbZJU1PTe/r+AAAAAAAA4M82eZnXr1+/NDQ0pLGxMUnS1NSUBQsWZMCAAUmy3km5JKmsrExbW1uSpG/fvvnCF76QmTNn5oorrsiRRx6Z3r17Z/HixVmzZk3Wrl2bhoaGdzzPXnvtlSSZNGlS5syZk/nz528w95577pmnn346bW1taW5uzjPPPNOe44knnkiSPP3000mS7bbbLqtXr26/x1/84hfZY489Nnh/AAAAAAAAsDE2+WM2e/TokbFjx+aLX/xi6urq0tLSkvr6+uy+++5ZsWLFux67/fbbp6WlJZMnT87IkSMzfvz43HXXXVm9enVGjx6dnj175qyzzsoJJ5yQnj17pmvXru96vm222SaXXnppzjnnnNx9993vuu8+++yTww8/PCNGjMh2222X6urqVFVV5ayzzsqYMWNy3333pVevXkneLOy+8Y1v5Mwzz0xFRUW22WabXHzxxe3TeQAAAAAAALApVJRKpVK5QxTBypUr86Mf/SgnnXRSmpubc8QRR+SWW27Jrrvu2mEZGhoa0vjFkR12PaA4Dn/4Z+WOsNk0NDSkf//+5Y4BsElZ24DOyNoGdEbWNqAzsrZ1Xuv7227yybz3q+222y6//vWv8+lPfzoVFRU5/vjjO7TIAwAAAAAAgL+kzPv/Kisrc/HFF5c7BgAAAAAAALSrLHcAAAAAAAAA4J0p8wAAAAAAAKCglHkAAAAAAABQUMo8AAAAAAAAKChlHgAAAAAAABSUMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFBV5Q7AW0ptbTn84Z+VOwZQBm1NTamsrS13DAAAAAAACsZkXoE0NTeXOwJQJoo8AAAAAADeiTIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyrwCqampKXcE6DRaW9aWOwIAAAAAAPzVqsodgLdUVlbm6nPuLXcM6BRGX3ZkuSMAAAAAAMBfzWQeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCg3lOZt3Tp0vzsZz/LihUrUiqVNncmAAAAAAAAIEnVhna47bbb8sADD+RPf/pTjjnmmPzud7/LBRdc0BHZAAAAAAAAYIu2wcm8uXPnZsaMGdlqq63yhS98Ib/61a86IhcAAAAAAABs8TZY5v35sZoVFRVJkpqams2bCAAAAAAAAEjyHh6z+alPfSonnXRSli9fntNOOy2f+MQnOiIXAAAAAAAAbPE2WOb9y7/8Sw4++OAsXLgwffv2zT777NMRuQAAAAAAAGCLt8Ey76mnnsrcuXPT1NSU+fPnJ0kmTpy4uXNtVsuWLctRRx2VAQMGtG8bMmRIRo8eXcZUAAAAAAAAsK4NlnnnnXdeTjvttGy99dYdkafD7Lnnnpk5c2a5YwAAAAAAAMB6bbDM23333XPcccd1RJaymj9/fqZMmZLq6uqMGDEidXV1mTVrVvvnU6dOzaJFi3LDDTekuro6y5Yty/DhwzNq1KgsXbo0559/flpaWlJXV5fLL788TU1NmTBhQpqamlJbW5tJkyZll112KeMdAgAAAAAA8H6zwTLvH//xHzNmzJj069evfVtneBzl4sWLU19f3/7++OOPT1NTU2bPnp0kue666zJt2rR07do1F1xwQebNm5eddtopy5cvzz333JPm5uYceuihGTVqVC699NKcfvrpOeyww3LfffflmWeeyZw5c1JfX5/DDz88P//5zzNlypRcdtll5bpdAAAAAAAA3oc2WObdfvvt+fu///tO/5jN+fPnp0+fPu3vt99++5x33nnp3r17nnvuuQwaNChJsvfee6eqqipVVVWpq6tLkvz3f/939t9//yTJ8OHDkyQXXXRRrr/++tx4440plUqprq7uqFsDAAAAAACgk9hgmbfNNtvk9NNP74gsZVdZWZkkefXVV3PllVfmoYceSpKcfPLJKZVKSZKKioq3HdevX788/fTT+du//dvcc889+dOf/pS+ffvmlFNOyeDBg7NkyZIsWLCgw+4DAAAAAACAzmGDZd52222XCy64IPvtt197kfWZz3xmswcrpx49emTw4ME59thj061bt2y99dZpbGxMr1693nH/r371q7ngggty7bXXpq6uLpMnT87QoUMzceLENDU1Zc2aNRk/fnwH3wUAAAAAAADvdxss83bfffckycsvv7zZw3SUXr165a677lpn25AhQzJkyJAkb07fTZ069R2P/fM+SfLoo48mefM7uuWWW9bZb9ttt8306dM3ZWwAAAAAAAC2MBss80aPHp3Gxsa0tramVCqlsbGxI3IBAAAAAADAFm+DZd7Xvva1PPnkk3njjTeyZs2a9O7d+21TbQAAAAAAAMCmV7mhHZ577rnMnTs3f/d3f5e5c+emtra2I3IBAAAAAADAFm+DZV737t1TUVGR119/PT179kxLS0tH5AIAAAAAAIAt3gbLvAEDBmT69OnZcccdM2bMmLS2tnZELgAAAAAAANjibfA3884+++ysXr06dXV1efjhhzNw4MCOyAUAAAAAAABbvPWWed/73vfecfu8efNyzDHHbLZAAAAAAAAAwJvWW+YtWbJknfelUil333136urqlHkAAAAAAADQAdZb5p1zzjntr59//vmMHTs2Q4cOzde+9rUOCQYAAAAAAABbug3+Zt6sWbNyyy23ZNy4cRk2bFhHZAIAAAAAAADyLmXeiy++mHHjxmWbbbbJ7Nmzs80223RkLgAAAAAAANjirbfM+9SnPpXq6uocdNBB+frXv77OZ5dddtlmDwYAAAAAAABbuvWWeddcc01H5gAAAAAAAAD+wnrLvAMPPLAjc5Ckra0toy87stwxoFNobVmbquou5Y4BAAAAAAB/lcpyB+Atzc3N5Y4AnYYiDwAAAACAzmCDZV5LS0tH5AAAAAAAAAD+wgbLvOOOOy4XXnhhFi5c2BF5AAAAAAAAgP9vvb+Z92ff//7388gjj+Tqq6/OqlWrctRRR2X48OHp3r17R+QDAAAAAACALdYGJ/MqKytz2GGH5dOf/nS23XbbzJw5M6eeemruvPPOjsgHAAAAAAAAW6wNTuZ985vfzIMPPpgDDzwwp512WgYOHJi2trYcd9xx+cxnPtMRGQEAAAAAAGCLtMEyb5dddsndd9+9zmM1Kysrc/XVV2/WYAAAAAAAALCl2+BjNu+77753/H28Xr16bZZAAAAAAAAAwJs2OJnXrVu3XHTRRenTp08qK9/s/jxec/OoqakpdwToMK3NzanyPw8AAAAAAO9qg2Xe/vvvnyRZuXLlZg+zpausrMyF//LP5Y4BHWL8bXPKHQEAAAAAAApvg2VeZWVlzjjjjPb3l1122WYNBAAAAAAAALxpvWXe7NmzM2fOnCxZsiQPP/xwkqStrS0tLS0555xzOiwgAAAAAAAAbKnWW+YdffTROfjgg3P99ddn5MiRSd6c0tt+++07LBwAAAAAAABsySrX90FNTU169eqV//iP/8jKlSuzfPnyLFu2LL/61a86Mh8AAAAAAABssTb4m3lf+tKXsnLlyuyyyy5JkoqKihxwwAGbPRgAAAAAAABs6TZY5r388sv59re/3RFZAAAAAAAAgP9lvY/Z/LM+ffrkxRdf7IgsAAAAAAAAwP+ywcm8xx9/PMOGDUvPnj3bt82bN2+zhgIAAAAAAADeQ5l3//33d0QOAAAAAAAA4C9ssMwbN27c27ZdfPHFmyUMAAAAAAAA8JYNlnnDhw9PkpRKpTzzzDNpbGzc7KEAAAAAAACA91DmHXrooe2vDzvssJxyyimbNRAAAAAAAADwpg2WefPmzWt//dJLL+Xll3UFJIoAAB5fSURBVF/erIHKadGiRZk8eXLeeOONvP766zn88MNz4IEH5s4778zll1++zr4XXnhhTj755Oy6665lSgsAAAAAAEBnt8Eyb+7cue2va2pqctFFF23WQOXyyiuv5Oyzz85VV12VPfbYI2vXrs1ZZ52VHXbY4R33Hz9+fAcnBAAAAAAAYEuzwTLv4osvzsKFC7N48eL06dMn/fv374hcHe7BBx/MkCFDssceeyRJunTpkksvvTRPPPFEZs+enX/913/NH/7whwwbNixnnnlm6uvrM3HixNx3331ZtmxZVq5cmeXLl2fcuHE59NBD86Mf/SizZs1qP//UqVPTs2fPMt0dAAAAAAAA70eVG9ph5syZmTBhQp544olMmDAh06dP74hcHa6xsTG9e/deZ1v37t1TXV2dpqamfOtb38qsWbNy2223ve3Ympqa3HjjjRk/fnxmzJiRJFm6dGmmTZuWmTNnpk+fPus8rhQAAAAAAADeiw1O5v3gBz/IrFmzUlVVlZaWlpxwwgk59dRTOyJbh9p1113zzDPPrLPthRdeyIIFC7LXXnulpqYmSVJV9fav7M/TijvvvHOam5uTJNtvv33OO++8dO/ePc8991wGDRq0me8AAAAAAACAzmaDk3mlUqm9wKqurk51dfVmD1UOw4YNyyOPPJLf/e53SZKWlpZccskl2W677VJRUfGux/7l56+++mquvPLKXH755fnGN76R2tralEqlzZYdAAAAAACAzmmDk3kf+chH8qUvfSkf+chH8vjjj2f//ffviFwdrkePHrnkkkty/vnnp1Qq5bXXXsuwYcPSr1+//Nd//ddGn2vw4ME59thj061bt2y99dZpbGzcTMkBAAAAAADorCpK72Fk7KGHHsqSJUvSr1+/DB06tANibZkaGhpy94UTyh0DOsT42+aUOwIdpKGhof1xxACdhbUN6IysbUBnZG0DOiNrW+e1vr/tuz5m884770xra2uGDh2aD3/4w/n973+/2QICAAAAAAAA61pvmXfVVVfl0UcfTUtLS5Jk5513zqOPPpqrr766w8IBAAAAAADAlmy9Zd7DDz+cqVOnpmvXrkmSXr165fLLL89Pf/rTDgsHAAAAAAAAW7L1lnndunVLRUXFOtuqq6vTvXv3zR4KAAAAAAAAeJcyr66uLi+88MI621544YW3FXwAAAAAAADA5lG1vg/OPffcnHHGGTn44IPTu3fvLF++PPPmzcull17akfkAAAAAAABgi7Xeyby99tort99+e/bbb7+88cYbGTBgQO64447st99+HZkPAAAAAAAAtljrncxLkq222irHHHNMR2UBAAAAAAAA/pf1TuYBAAAAAAAA5aXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoKrKHYC3tLW1Zfxtc8odAzpEa3Nzqmpqyh0DAAAAAAAKzWRegTQ3N5c7AnQYRR4AAAAAAGyYMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZV6B1NbUljsC/FXaWteWOwIAAAAAAHQqVeUOwFsqKivScOFPyh0D/s/6j/9YuSMAAAAAAECnYjIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp896jZcuWZcSIEfntb3+bBQsWrHe/+fPnZ8yYMR2YDAAAAAAAgM5KmbeR7r///ixevLjcMQAAAAAAANgCVJU7wPvJH//4x3z3u99NdXV1BgwYkOXLl2fWrFntn0+dOrX99bx583LXXXflyiuvTJKccMIJufLKK7Pjjjt2eG4AAAAAAADen0zmbYRtt902xx57bL7whS9k4MCBWbp0aaZNm5aZM2emT58+mTdvXvu+hxxySBYuXJg//elPWbx4cbbbbjtFHgAAAAAAABvFZN5fYfvtt895552X7t2757nnnsugQYPaP6uoqMhRRx2VH/zgB1m2bFn++Z//uYxJAQAAAAAAeD9S5m2kioqKtLW15dVXX82VV16Zhx56KEly8sknp1QqrbPvpz/96Zx77rl54403cs4555QhLQAAAAAAAO9nyryN9KEPfSjf/OY3069fvwwePDjHHntsunXrlq233jqNjY3p1atX+7477bRTunfvnkGDBqWqylcNAAAAAADAxtEwvUe9evXKXXfdlSQZOnRokuSggw56x32HDBnS/rpUKnnEJgAAAAAAAP8nleUO0FmtWbMmxx13XPbdd9/svvvu5Y4DAAAAAADA+5DJvM2krq4ud999d7ljAAAAAAAA8D5mMg8AAAAAAAAKSpkHAAAAAAAABaXMAwAAAAAAgIJS5gEAAAAAAEBBKfMAAAAAAACgoJR5AAAAAAAAUFDKPAAAAAAAACgoZR4AAAAAAAAUlDIPAAAAAAAACkqZBwAAAAAAAAWlzAMAAAAAAICCqip3AN5Saitlv/EfK3cM+D9ra12byqou5Y4BAAAAAACdhsm8Amlqbip3BPirKPIAAAAAAGDTUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwrkJqamnJHYBNpaWkpdwQAAAAAAKATqCp3AN5SWVmZiRMnljsGm4C/IwAAAAAAsCmYzAMAAAAAAICCUuYBAAAAAABAQSnzAAAAAAAAoKCUeQAAAAAAAFBQyjwAAAAAAAAoKGUeAAAAAAAAFJQyDwAAAAAAAApKmQcAAAAAAAAFpcwDAAAAAACAglLmAQAAAAAAQEEp8wAAAAAAAKCglHkAAAAAAABQUFXlDtBRFi1alMmTJ+eNN97I66+/nsMPPzxnnnlmKioqNtk1mpqa8k//9E/5yU9+ssnOCQAAAAAAwJZri5jMe+WVV3L22Wfna1/7WmbOnJm77rorCxcuzLe//e1yRwMAAAAAAID12iIm8x588MEMGTIke+yxR5KkS5cuufTSS1NdXZ3x48dnxYoVWbVqVQ477LB8+ctfztixY1NTU5P/+Z//SWNjYy655JIMGDAgt912W+6///60trZmq622ylVXXZWWlpace+65eeWVV7Lbbru1X/MXv/hFrr766iTJmjVrcumll6ZPnz7luH0AAAAAAADep7aIybzGxsb07t17nW3du3dPY2NjBg0alOnTp+eOO+7IHXfc0f75rrvumunTp6e+vj533nln2tra8sc//jEzZszI7bffntbW1jz99NP57ne/m7333juzZs3KCSec0H78nx/reeutt+ZjH/tYfvSjH3XY/QIAAAAAANA5bBGTebvuumueeeaZdba98MILWbFiRZ5++uk89thj6dGjR5qbm9s/79+/f5Jk5513zi9/+ctUVlamuro6Z599drp165YVK1aktbU1ixYtyqGHHpok+fCHP5yqqje/0p122ikXXnhhunXrlhdffDGDBw/uoLsFAAAAAACgs9giJvOGDRuWRx55JL/73e+SJC0tLbnkkkvS0NCQrbbaKpdddllOOeWUrFmzJqVSKUlSUVGxzjmeffbZ/PjHP84VV1yRCRMmpK2tLaVSKX379s2TTz6ZJHnmmWfS2tqaJDn//PNz0UUX5ZJLLsmOO+7Yfl4AAAAAAAB4r7aIybwePXrkkksuyfnnn59SqZTXXnstw4YNy8EHH5yzzz47jz/+eLp27Zrdd989jY2N73iO3XffPV27ds1xxx2Xmpqa7LDDDmlsbMxJJ52UcePG5bOf/Wz69u2b6urqJMnRRx+dESNGZOutt84HPvCB9Z4XAAAAAAAA1qeiZGSsMBoaGnLnnXeWOwabwMSJE8sdAQqjoaGh/dHFAJ2FtQ3ojP5fe3cfpFVdvw/82l0WQkGJcEqdcEBTs0JcGbOxNEdJCvABBXTzFk2nxhrzoUzCjC1JxdKaVscMfMhtdAQrQ0f9amSRT5CkiEbYbMb4NGaJwiLDLrv374/GNUQX8QecA7xef+19zuc+e53Z4T03c+35rNkGbIvMNmBbZLZtu97pZ7tdbLMJAAAAAAAAWyNlHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfMAAAAAAACgpJR5AAAAAAAAUFLKPAAAAAAAACgpZR4AAAAAAACUlDIPAAAAAAAASkqZBwAAAAAAACXVq+gAvKmrqytNTU1Fx2AT6OjoSH19fdExAAAAAACArZwn80qkvb296AhsIoo8AAAAAABgU1DmAQAAAAAAQEkp8wAAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKCllHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMK5HevXsXHYH3oLNzTdERAAAAAACAbVSvogPwptra2syafVDRMdhIE8YvKDoCAAAAAACwjfJkHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfMAAAAAAACgpJR5AAAAAAAAUFLKPAAAAAAAACgpZR4AAAAAAACUlDIPAAAAAAAASkqZBwAAAAAAACWlzAMAAAAAAICS2i7LvPnz52efffbJXXfdtc7xsWPHZvLkye/6Or/+9a8zd+7cTR0PAAAAAAAAkmynZV6SDB06NHfeeWf366VLl2b16tUbdY1x48bliCOO2NTRAAAAAAAAIEnSq+gARdl3333zz3/+MytWrMhOO+2UOXPmZOzYsXnxxRdz991358Ybb0xtbW0OPPDAfPOb38z06dNTX1+fc845J6eddlpOO+20LF68OIMGDcrEiRMzbdq0PPHEE+no6MhZZ52VI488MpdddlkWLlyYJBkzZkwmTZpU8F0DAAAAAACwNdlun8xLkpEjR+a+++5LtVrNE088kQMOOCCvvvpqmpubc+ONN+aWW27JSy+9lAcffDDnnXdeHnnkkVxwwQUZNmxYPvvZz3ZfZ+7cuVm+fHluu+22zJw5M4sXL87999+f5557LrNmzcrNN9+cO++8M0uXLi3uZgEAAAAAANjqbNdl3tixY3PXXXflz3/+c0aMGJEk6ezszCuvvJIvf/nLqVQqaW1tzbPPPpv6+vpMmjQpd999d0455ZR1rvPMM89k+PDhSZJddtkl5557blpbWzNixIjU1NSkvr4++++/f1pbW7f4PQIAAAAAALD12q7LvA9/+MN5/fXX09LSkqOPPjpJUlNTk1133TXXX399WlpacvLJJ2f//ffPa6+9lp/97GeZPHlyLrroonWuM3To0CxevDhJsnLlypx++unZc889u7fY7OjoyGOPPZY99thjy94gAAAAAAAAW7Xt9m/mveELX/hCfvvb32bIkCF59tlnM3DgwIwePTqVSiWdnZ3Zfffd8/nPfz7nn39+zjjjjBxzzDF58sknc9NNN3Vf44gjjsjDDz+ck046KZ2dnfna176Www47LAsWLMjEiRPT0dGRUaNG5WMf+1iBdwoAAAAAAMDWpqZarVaLDsF/LVmyJIufnFR0DDbShPELio4ApbZkyZJ89KMfLToGwCZltgHbIrMN2BaZbcC2yGzbdr3Tz3a73mYTAAAAAAAAykyZBwAAAAAAACWlzAMAAAAAAICSUuYBAAAAAABASSnzAAAAAAAAoKSUeQAAAAAAAFBSyjwAAAAAAAAoKWUeAAAAAAAAlJQyDwAAAAAAAEpKmQcAAAAAAAAlpcwDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAKCkehUdgDd1dXVlwvgFRcdgI3V2rkldXZ+iYwAAAAAAANsgT+aVSHt7e9EReA8UeQAAAAAAwOaizAMAAAAAAICSUuYBAAAAAABASSnzAAAAAAAAoKSUeQAAAAAAAFBSyjwAAAAAAAAoKWUeAAAAAAAAlJQyDwAAAAAAAEpKmVcivXv3LjoCb2NNZ2fREQAAAAAAgO1Ur6ID8Kba2trsf9v/FR2Dt1h0wlFFRwAAAAAAALZTnswDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKCllHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfMAAAAAAACgpJR5AAAAAAAAUFLKvP8xf/78fOpTn0qlUsnJJ5+cE088Ma2tre/5ej/4wQ/ywgsvpLm5ObfccssmTAoAAAAAAMD2oFfRAcrm4IMPzo9//OMkyQMPPJDLL78811577Xu61oUXXrgpowEAAAAAALCdUeb1YMWKFdl9991TqVTy/ve/PytWrEhzc3O+853vZOXKlVm+fHnGjx+fxsbGnHnmmWlra0uS/OUvf8kNN9yQ5ubmNDU1FXsTAAAAAAAAbLWUeW/xyCOPpFKppL29PUuXLs21116bv//97xk7dmxGjhyZp556KqNHj87nPve5vPTSS6lUKmlsbMw111yTJLniiivS0NCQgw46qOA7AQAAAAAAYGunzHuL/91m8x//+EdOPPHE7LHHHhkyZEiSZNCgQfnFL36Re++9N/369cvatWu733vdddflP//5Ty655JJCsgMAAAAAALBtqS06QJkNGjSo++uampokyfXXX5/hw4fnRz/6UUaNGpVqtZokmT17dhYuXJiLL764kKwAAAAAAABsezyZ9xZvbLNZW1ubVatWZfLkyfnNb37Tff7www9PU1NT7rjjjgwYMCB1dXV5/vnnM3Xq1DQ0NOTUU09NkkyYMKGgOwAAAAAAAGBbocz7H5/85Cfz8MMPr3d83Lhx3V8ffPDBueeee9Zb89e//nW9Y2PHjk2SnHXWWZswJQAAAAAAANsL22wCAAAAAABASSnzAAAAAAAAoKSUeQAAAAAAAFBSyjwAAAAAAAAoKWUeAAAAAAAAlJQyDwAAAAAAAEpKmQcAAAAAAAAlpcwDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKKleRQfgTV1dXVl0wlFFx+At1nR2pk9dXdExAAAAAACA7ZAn80qkvb296Ai8DUUeAAAAAABQFGUeAAAAAAAAlJQyDwAAAAAAAEpKmQcAAAAAAAAlVVOtVqtFh+C/Hn/88fTp06foGAAAAAAAAGxha9asyfDhw9c7rswDAAAAAACAkrLNJgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJKfO2sK6urnz3u9/NxIkTU6lUsmzZsnXOz5o1K+PGjcuECRNy//33F5QSYONsaLbdeOONGT9+fMaPH5+rrrqqoJQAG2dDs+2NNWeccUZuueWWAhICbLwNzbY//vGPmTBhQiZMmJCmpqZUq9WCkgK8exuabdddd13GjRuX448/Pvfdd19BKQHem0WLFqVSqax3/Pe//32OP/74TJw4MbNmzSogGVtSr6IDbG9+97vfpb29Pbfeemsef/zxXHbZZbnmmmuSJC+//HJaWlryq1/9KmvWrEljY2MOOeSQ9O7du+DUAD3rabY9++yzmTNnTmbPnp2ampo0NjbmyCOPzL777ltwaoCe9TTb3vCTn/wkr732WkEJATZeT7Otra0tP/zhD3PTTTdl4MCBmTFjRpYvX56BAwcWnBqgZz3NthUrVqSlpSX33ntvVq9enWOPPTYjR44sODHAuzNjxozMmTMnffv2Xed4R0dHLr300tx2223p27dvTjrppBx++OHZZZddCkrK5ubJvC1s4cKF+cxnPpMkGT58eJ588snuc0888UQOOOCA9O7dO/3798/gwYPzt7/9raioAO9aT7PtQx/6UGbOnJm6urrU1tZm7dq16dOnT1FRAd61nmZbktxzzz2pqanJoYceWkQ8gPekp9n22GOPZe+998706dPT2NiYQYMGKfKArUJPs61v377Zbbfdsnr16qxevTo1NTVFxQTYaIMHD05zc/N6x1tbWzN48ODsvPPO6d27dw488MA8+uijBSRkS/Fk3hbW1taWfv36db+uq6vL2rVr06tXr7S1taV///7d53bccce0tbUVERNgo/Q02+rr6zNw4MBUq9Vcfvnl2W+//TJkyJAC0wK8Oz3Ntqeffjp33nlnfvrTn+bqq68uMCXAxulpti1fvjzz58/P7bffnh122CFf/OIXM3z4cJ/dgNLrabYlya677prRo0ens7MzX/nKV4qKCbDRjjrqqDz33HPrHdclbH+UeVtYv379smrVqu7XXV1d3R8s3npu1apV6/yDBCirnmZbkqxZsyZTpkzJjjvumKlTpxYREWCj9TTbbr/99rz00kuZNGlSnn/++dTX12f33Xf3lB5Qej3NtgEDBuQTn/hE9/ZMI0aMyJIlS5R5QOn1NNvmzZuXf/3rX5k7d26S5PTTT09DQ0OGDRtWSFaATUGXsP2xzeYW1tDQkHnz5iVJHn/88ey9997d54YNG5aFCxdmzZo1WblyZVpbW9c5D1BWPc22arWar371q9lnn33y/e9/P3V1dUXFBNgoPc22b33rW5k9e3ZaWlpy3HHH5dRTT1XkAVuFnmbbxz/+8Tz99NN55ZVXsnbt2ixatCh77bVXUVEB3rWeZtvOO++c973vfendu3f69OmT/v37Z8WKFUVFBdgk9txzzyxbtiyvvvpq2tvb8+ijj+aAAw4oOhabkSfztrCRI0fmwQcfzIknnphqtZpLLrkkN9xwQwYPHpwjjjgilUoljY2NqVarOffcc/1dKWCr0NNs6+rqyoIFC9Le3p4//elPSZLzzjvPBwyg9Db0uQ1ga7Sh2faNb3wjZ5xxRpJk1KhRfsEU2CpsaLY99NBDmTBhQmpra9PQ0JBDDjmk6MgA78kdd9yR119/PRMnTszkyZNz+umnp1qt5vjjj88HP/jBouOxGdVUq9Vq0SEAAAAAAACA9dlmEwAAAAAAAEpKmQcAAAAAAAAlpcwDAAAAAACAklLmAQAAAAAAQEkp8wAAAAAAAGAjLFq0KJVKZYPrli1bljFjxnS/fvnllzNp0qQ0Njbm7LPPzurVqzd4jV7/X0kBAACgBx0dHZkyZUqef/75tLe358wzz8xee+2VyZMnp6amJh/5yEcyderU1NbW5qqrrsof/vCH9OrVK1OmTMmwYcOybNmyt10LAABQlBkzZmTOnDnp27dvj+tuv/323HTTTVm+fHn3sZ///Oc57rjjcuyxx6a5uTm33nprTj311B6v439AAAAAbDZz5szJgAEDcvPNN2fGjBm5+OKLc+mll+acc87JzTffnGq1mrlz5+app57KggULMnv27Fx55ZX53ve+lyRvuxYAAKBIgwcPTnNzc/frpUuXplKppFKp5KyzzsrKlSuTJDvvvHN++ctfrvPeKVOm5Oijj05XV1defPHFfOADH9jg91PmAQAAsNmMGjUqZ599dvfrurq6PPXUUznooIOSJIceemgeeuihLFy4MJ/+9KdTU1OT3XbbLZ2dnXnllVfedi0AAECRjjrqqPTq9ebmlxdddFGmTp2alpaWHHrooZk5c2aS5PDDD88OO+ywzntramrS2dmZMWPGZP78+WloaNjg97PNJgAAAJvNjjvumCRpa2vL17/+9ZxzzjmZPn16ampqus+vXLkybW1tGTBgwDrvW7lyZarV6nprAQAAyqS1tbV7d5GOjo4MGTKkx/X19fW566678tBDD+WCCy5Y7+m9t/JkHgAAAJvViy++mFNOOSXHHHNMxo4du87fvFu1alV22mmn9OvXL6tWrVrneP/+/d92LQAAQJkMGTIk06dPT0tLS84///wcdthh77i2qakpjzzySJL//sLiG7+82BNlHgAAAJvNv//973zpS1/K+eefnxNOOCFJst9++2X+/PlJknnz5mXEiBFpaGjIAw88kK6urrzwwgvp6urKwIED33YtAABAmTQ1NeWCCy5IY2Njrrjiiuyzzz7vuLZSqeTqq69OpVLJlVdemaampg1ev6ZarVY3YV4AAADoNm3atNx9990ZOnRo97ELL7ww06ZNS0dHR4YOHZpp06alrq4uzc3NmTdvXrq6uvLtb387I0aMyDPPPJOLLrpovbUAAADbC2UeAAAAAAAAlJRtNgEAAAAAAKCklHkAAAAAAABQUso8AAAAAAAAKCllHgAAAAAAAJSUMg8AAAAAAABKSpkHAAAAAAAAJaXMAwAAAAAAgJJS5gEAAAAAAEBJ/T/jEbejW4J9qQAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 2160x576 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "\n",
-    "sns.set_style(\"whitegrid\")\n",
-    "plt.figure(figsize=(30,8))\n",
-    "df = df.sort_values(by='2000',ascending=False)\n",
-    "sns.barplot(x='2000', y='Country Name',data=df.iloc[0:10,], orient='h')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.3"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git "a/ebooks/Python\346\225\260\346\215\256\345\210\206\346\236\220\344\270\216\346\214\226\346\216\230\345\256\236\346\210\230_\345\244\247\346\225\260\346\215\256\346\212\200\346\234\257\344\270\233\344\271\246_-_\345\274\240\350\211\257\345\235\207__\347\255\211__\350\275\257\344\273\266\345\267\245\345\205\267_\347\250\213\345\272\217\350\256\276\350\256\241.pdf" "b/ebooks/Python\346\225\260\346\215\256\345\210\206\346\236\220\344\270\216\346\214\226\346\216\230\345\256\236\346\210\230_\345\244\247\346\225\260\346\215\256\346\212\200\346\234\257\344\270\233\344\271\246_-_\345\274\240\350\211\257\345\235\207__\347\255\211__\350\275\257\344\273\266\345\267\245\345\205\267_\347\250\213\345\272\217\350\256\276\350\256\241.pdf"
new file mode 100644
index 0000000..61821e5
Binary files /dev/null and "b/ebooks/Python\346\225\260\346\215\256\345\210\206\346\236\220\344\270\216\346\214\226\346\216\230\345\256\236\346\210\230_\345\244\247\346\225\260\346\215\256\346\212\200\346\234\257\344\270\233\344\271\246_-_\345\274\240\350\211\257\345\235\207__\347\255\211__\350\275\257\344\273\266\345\267\245\345\205\267_\347\250\213\345\272\217\350\256\276\350\256\241.pdf" differ
diff --git a/ebooks/pyda-2e.pdf b/ebooks/pyda-2e.pdf
new file mode 100644
index 0000000..904b0f3
Binary files /dev/null and b/ebooks/pyda-2e.pdf differ
diff --git "a/GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md" "b/project/Country_GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md"
similarity index 96%
rename from "GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md"
rename to "project/Country_GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md"
index fcc46f0..64f1a6d 100644
--- "a/GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md"
+++ "b/project/Country_GDP/2019-12-19-\344\270\226\347\225\214GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.md"
@@ -12,6 +12,7 @@ import seaborn as sns
 
 ### 导入数据
 
+[数据下载](https://github.com/LIU-HONGYANG/python/blob/master/GDP/Country_GDP.csv)
 
 ```{python}
 Country_GDP= pd.read_csv("Country_GDP.csv",sep=";")
@@ -129,4 +130,8 @@ sns.barplot(x='2000', y='Country Name',data=df.iloc[0:10,], orient='h')
 
 ## 结果
 
-![](https://tva1.sinaimg.cn/large/006tNbRwgy1ga2463hr60j31df0daq33.jpg)
\ No newline at end of file
+![](https://tva1.sinaimg.cn/large/006tNbRwgy1ga2463hr60j31df0daq33.jpg)
+
+References:
+
+[GDP (current US$)](https://data.worldbank.org/indicator/ny.gdp.mktp.cd)
\ No newline at end of file
diff --git a/GDP/Country_GDP.csv b/project/Country_GDP/Country_GDP.csv
similarity index 100%
rename from GDP/Country_GDP.csv
rename to project/Country_GDP/Country_GDP.csv
diff --git a/GDP/download.png b/project/Country_GDP/download.png
similarity index 100%
rename from GDP/download.png
rename to project/Country_GDP/download.png
diff --git "a/GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb" "b/project/Country_GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb"
similarity index 100%
rename from "GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb"
rename to "project/Country_GDP/\345\220\204\345\233\275GDP\346\225\260\346\215\256\345\217\257\350\247\206\345\214\226.ipynb"