-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_scraping.py
60 lines (50 loc) · 1.93 KB
/
web_scraping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import requests
from bs4 import BeautifulSoup
import pandas as pd
final = pd.DataFrame()
for j in range (1,10):
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.162 Safari/537.36'}
response = requests.get(f'https://www.ambitionbox.com/list-of-companies?campaign=desktop_nav&page={j}',headers=headers).text
soup = BeautifulSoup(response, 'lxml')
companies = soup.find_all('div', class_='company-content-wrapper')
comp_names = []
ratings = []
reviews = []
c_type = []
Locations = []
how_old = []
workforce = []
for i in companies:
try:
comp_names.append(i.find('h2').text.strip())
except:
comp_names.append("None")
try:
ratings.append(i.find('p').text.strip())
except:
ratings.append("None")
try:
reviews.append(i.find('a', class_='review-count').text.strip())
except:
reviews.append("None")
try:
c_type.append(i.find('p', class_='infoEntity').text.strip())
except:
c_type.append("None")
try:
Locations.append(i.find_all('p', class_='infoEntity')[1].text.strip())
except:
Locations.append("None")
try:
how_old.append(i.find_all('p', class_='infoEntity')[2].text.strip())
except:
how_old.append("None")
try:
workforce.append(i.find_all('p', class_='infoEntity')[3].text.strip())
except:
workforce.append("None")
dict = {'Name':comp_names, 'Ratings':ratings, 'Reviews':reviews, 'Company_Type':c_type, 'Locations':Locations, 'How_Old':how_old, 'Workforce':workforce }
df = pd.DataFrame(dict)
final = final.append(df,ignore_index= True)
pd.set_option('display.colheader_justify', 'center')
csv_data = final.to_csv('scraped1_data.csv',na_rep="None")