-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_stage3.py
288 lines (229 loc) · 11.1 KB
/
train_stage3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import argparse
import datetime
import os.path as osp
import copy
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from datasets.mini_imagenet import MiniImageNet
from datasets.tiered_imagenet import TieredImageNet
from datasets.cifarfs import CIFAR_FS
from datasets.samplers import CategoriesSampler
from models.convnet import Convnet
from models.distill import DistillKL, HintLoss
from models.resnet import resnet12
from utils import set_gpu, ensure_path, Averager, Timer, count_acc, euclidean_metric, seed_torch, compute_confidence_interval
def get_dataset(args):
if args.dataset == 'mini':
trainset = MiniImageNet('train', args.size)
valset = MiniImageNet('test', args.size)
print("=> MiniImageNet...")
elif args.dataset == 'tiered':
trainset = TieredImageNet('train', args.size)
valset = TieredImageNet('test', args.size)
print("=> TieredImageNet...")
elif args.dataset == 'cifarfs':
trainset = CIFAR_FS('train', args.size)
valset = CIFAR_FS('test', args.size)
print("=> CIFAR FS...")
else:
print("Invalid dataset...")
exit()
train_sampler = CategoriesSampler(trainset.label, args.train_batch,
args.train_way, args.shot + args.train_query)
train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler,
num_workers=args.worker, pin_memory=True)
val_sampler = CategoriesSampler(valset.label, args.test_batch,
args.test_way, args.shot + args.test_query)
val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler,
num_workers=args.worker, pin_memory=True)
return train_loader, val_loader
def training(args):
ensure_path(args.save_path)
train_loader, val_loader = get_dataset(args)
if args.model == 'convnet':
teacher = Convnet().cuda()
print("=> Convnet architecture...")
else:
if args.dataset in ['mini', 'tiered']:
teacher = resnet12(avg_pool=True, drop_rate=0.1, dropblock_size=5).cuda()
else:
teacher = resnet12(avg_pool=True, drop_rate=0.1, dropblock_size=2).cuda()
print("=> Resnet architecture...")
if args.kd_mode != 0:
# produce a student model with the same structure as teacher model without knowldege
model = copy.deepcopy(teacher)
if args.stage1_path:
model.load_state_dict(torch.load(osp.join(args.stage1_path, 'max-acc.pth')))
print("=> Student loaded with pretrain knowledge...")
teacher.load_state_dict(torch.load(osp.join(args.stage2_path, 'max-acc.pth')))
print("=> Teacher model loaded...")
if args.kd_mode == 0:
# intilialize student with same knowledge as teacher
model = copy.deepcopy(teacher)
print("=> Student obtain teacher's knowledge...")
if args.kd_type == 'kd':
criterion_kd = DistillKL(args.temperature).cuda()
else:
criterion_kd = HintLoss().cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.5)
def save_model(name):
torch.save(model.state_dict(), osp.join(args.save_path, name + '.pth'))
trlog = {}
trlog['args'] = vars(args)
trlog['train_loss'] = []
trlog['val_loss'] = []
trlog['train_acc'] = []
trlog['val_acc'] = []
trlog['max_acc'] = 0.0
timer = Timer()
best_epoch = 0
cmi = [0.0, 0.0]
for epoch in range(1, args.max_epoch + 1):
tl, ta = train(args, teacher, model, train_loader, optimizer, criterion_kd)
lr_scheduler.step()
vl, va, aa, bb = validate(args, model, val_loader)
if va > trlog['max_acc']:
trlog['max_acc'] = va
save_model('max-acc')
best_epoch = epoch
cmi[0] = aa
cmi[1] = bb
trlog['train_loss'].append(tl)
trlog['train_acc'].append(ta)
trlog['val_loss'].append(vl)
trlog['val_acc'].append(va)
torch.save(trlog, osp.join(args.save_path, 'trlog'))
save_model('epoch-last')
ot, ots = timer.measure()
tt, _ = timer.measure(epoch / args.max_epoch)
print('Epoch {}/{}, train loss={:.4f} - acc={:.4f} - val loss={:.4f} - acc={:.4f} - max acc={:.4f} - ETA:{}/{}'.format(
epoch, args.max_epoch, tl, ta, vl, va, trlog['max_acc'], ots, timer.tts(tt-ot)))
if epoch == args.max_epoch:
print("Best Epoch is {} with acc={:.2f}±{:.2f}%...".format(best_epoch, cmi[0], cmi[1]))
print("---------------------------------------------------")
def ssl_loss(args, model, data_shot):
# s1 s2 q1 q2 q1 q2
x_90 = data_shot.transpose(2,3).flip(2)
x_180 = data_shot.flip(2).flip(3)
x_270 = data_shot.flip(2).transpose(2,3)
data_query = torch.cat((x_90, x_180, x_270),0)
proto = model(data_shot)
proto = proto.reshape(1, args.shot*args.train_way, -1).mean(dim=0)
label = torch.arange(args.train_way * args.shot).repeat(args.pre_query)
label = label.type(torch.cuda.LongTensor)
logits = euclidean_metric(model(data_query), proto)
loss = F.cross_entropy(logits, label)
return loss
def train(args, teacher, model, train_loader, optimizer, criterion_kd):
teacher.eval()
model.train()
tl = Averager()
ta = Averager()
for i, batch in enumerate(train_loader, 1):
data, _ = [_.cuda() for _ in batch]
p = args.shot * args.train_way
data_shot, data_query = data[:p], data[p:] # datashot (30, 3, 84, 84)
# teacher
with torch.no_grad():
tproto = teacher(data_shot)
ft = tproto
ft = [f.detach() for f in ft]
tproto = tproto.reshape(args.shot, args.train_way, -1).mean(dim=0)
# soft target from teacher
tlogits = euclidean_metric(teacher(data_query), tproto)
proto = model(data_shot) # (30, 1600)
fs = proto
proto = proto.reshape(args.shot, args.train_way, -1).mean(dim=0)
label = torch.arange(args.train_way).repeat(args.train_query)
label = label.type(torch.cuda.LongTensor)
logits = euclidean_metric(model(data_query), proto)
acc = count_acc(logits, label)
if args.kd_mode != 0:
# few-shot loss from student
clsloss = F.cross_entropy(logits, label)
# distillation loss
if args.kd_type == 'kd':
kdloss = criterion_kd(logits, tlogits)
else:
kdloss = criterion_kd(fs[-1], ft[-1])
# self-supervised loss signal
loss_ss = ssl_loss(args, model, data_shot)
if args.kd_mode != 0:
loss = ((1.0 - args.kd_coef) * clsloss) + (args.kd_coef * kdloss) + (args.ssl_coef * loss_ss)
else:
loss = kdloss + (args.ssl_coef * loss_ss)
tl.add(loss.item())
ta.add(acc)
optimizer.zero_grad()
loss.backward()
optimizer.step()
proto = None; logits = None; loss = None
return tl.item(), ta.item()
def validate(args, model, val_loader):
model.eval()
vl = Averager()
va = Averager()
acc_list = []
for i, batch in enumerate(val_loader, 1):
data, _ = [_.cuda() for _ in batch]
p = args.shot * args.test_way
data_shot, data_query = data[:p], data[p:]
proto = model(data_shot)
proto = proto.reshape(args.shot, args.test_way, -1).mean(dim=0)
label = torch.arange(args.test_way).repeat(args.test_query)
label = label.type(torch.cuda.LongTensor)
logits = euclidean_metric(model(data_query), proto)
loss = F.cross_entropy(logits, label)
acc = count_acc(logits, label)
vl.add(loss.item())
va.add(acc)
acc_list.append(acc*100)
proto = None; logits = None; loss = None
a,b = compute_confidence_interval(acc_list)
return vl.item(), va.item(), a, b
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--max-epoch', type=int, default=200)
parser.add_argument('--shot', type=int, default=1)
parser.add_argument('--pre-query', type=int, default=3) # for self-supervised process: the number of query image generated based on support image
parser.add_argument('--train-query', type=int, default=15)
parser.add_argument('--test-query', type=int, default=15)
parser.add_argument('--train-way', type=int, default=5)
parser.add_argument('--test-way', type=int, default=5)
parser.add_argument('--save-path', default='')
parser.add_argument('--gpu', default='0')
parser.add_argument('--size', type=int, default=84)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--wd', type=float, default=0.001)
parser.add_argument('--step-size', type=int, default=20)
parser.add_argument('--train-batch', type=int, default=100)
parser.add_argument('--test-batch', type=int, default=2000)
parser.add_argument('--worker', type=int, default=8)
parser.add_argument('--model', type=str, default='convnet', choices=['convnet', 'resnet'])
parser.add_argument('--dataset', type=str, default='mini', choices=['mini','tiered','cifarfs'])
parser.add_argument('--ssl-coef', type=float, default=0.1, help='The beta coefficient for self-supervised loss')
# self-distillation stage parameter
parser.add_argument('--temperature', type=int, default=4)
parser.add_argument('--kd-coef', type=float, default=0.1, help="The gamma coefficient for distillation loss")
# 0: copy teacher and only KD 1: common KD
parser.add_argument('--kd-mode', type=int, default=1, choices=[0,1])
parser.add_argument('--kd-type', type=str, default='kd', choices=['kd', 'hint'])
parser.add_argument('--stage1-path', default='')
parser.add_argument('--stage2-path', default='')
args = parser.parse_args()
start_time = datetime.datetime.now()
# fix seed
seed_torch(1)
set_gpu(args.gpu)
if args.dataset in ['mini', 'tiered']:
args.size = 84
elif args.dataset in ['cifarfs']:
args.size = 32
args.worker = 0
else:
args.size = 28
training(args)
end_time = datetime.datetime.now()
print("Total executed time :", end_time - start_time)