-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate_model.py
171 lines (138 loc) · 5.98 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import pandas as pd
import tqdm
from Bio import SeqIO
import os
import numpy as np
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split, StratifiedKFold
from tensorflow.keras.models import Model, Sequential, load_model
from tensorflow.keras.layers import Conv2D, Embedding, MaxPooling2D, Conv1D, Dense, MaxPooling1D, Input, Flatten, LSTM, Dropout, Bidirectional, Normalization, Flatten, Reshape, Lambda, LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import plot_model
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.callbacks import EarlyStopping,ModelCheckpoint
from sklearn.metrics import auc,confusion_matrix, matthews_corrcoef,accuracy_score,classification_report,f1_score,roc_curve,accuracy_score,roc_auc_score
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from numpy import array,argmax
from sklearn.model_selection import train_test_split
from keras import backend as K
from keras.backend import expand_dims
from keras import backend as K
from sklearn.manifold import TSNE
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import ListedColormap
import sys
import time
from random import randint
def get_input_for_embedding(fasta_file):
"""
input: fasta file with fixed window size
returns: integer encoding for all sequences
"""
encodings = []
# define the universe of possible input values
alphabet = 'ARNDCQEGHILKMFPSTWYVUX-'
# define a mapping of chars to integers
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
for seq_record in SeqIO.parse(fasta_file, "fasta"):
data = seq_record.seq
for char in data:
if char not in alphabet:
return
integer_encoded = [char_to_int[char] for char in data]
encodings.append(integer_encoded)
encodings = np.array(encodings)
return encodings
def extract_one_windows_position(protein_id,sequence,site_residue,site,window_size):
'''
Description: Extract a window from the given string at given position of given size
(Need to test more conditions, optimizations)
Parameters:
protein_id (str): just used for debug purpose
sequence (str):
site_residue (chr):
window_size(int):
Returns:
string: a window/section
'''
if (window_size%2)==0:
print('Error: Enter odd number window size')
return 0
half_window = int((window_size-1)//2)
if(sequence is None):
print('No sequence for [protein_id,site_residue,window_size] ='+str([protein_id, site_residue,window_size]))
return 0
else:
seq_length = len(sequence)
if(sequence[site-1] != site_residue): # check if site_residue at position site is valid
print('Given site-residue and site does not match [protein_id,site_residue, site] ='+str([protein_id, site_residue,site]))
return 0
# if window is greater than seq length, make the sequence long by introducing virtual amino acids
# To avoid different conditions for virtual amino acids, add half window everywhere
sequence = "-" * half_window + sequence + "-" * half_window
#sequence = sequence[::-1][:half_window][::-1] + sequence + sequence[:half_window]
site=site+half_window
section = sequence[site - 1-half_window : site + half_window]
return section
def load_all_models(model_names):
"""
description: combines different pretrained models
"""
all_models = list()
for model in model_names:
filename = 'models/'+ model + '.h5'
model = load_model(filename, custom_objects={"K": K},compile = False)
all_models.append(model)
print('>loaded %s' % filename)
return all_models
def get_predictions(model,data):
print('\n')
print('Generating features from final hidden layer\n')
#model.summary()
layer_name = model.layers[len(model.layers)-2].name #-1 for last layer, -2 for second last and so on"
print('\nGetting outputs from layer: '+layer_name)
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
print('\nObtained feature vector shape: '+str(intermediate_output.shape[1]))
print('\nShape of returned data: '+str(intermediate_output.shape))
print('-'*100)
return pd.DataFrame(intermediate_output)
# size of the fragment
win_size=37
# load pre-trained model
filename = 'models/pLMSNOSite.h5'
model_final = load_model(filename, custom_objects={"K": K},compile = False)
# load and prepare both protT5 and Embedding test dataset
X_test=pd.read_csv('data/test/protT5_test.csv')
df2=pd.read_csv('data/test/sequence_test.csv')
test_embedding = get_input_for_embedding('data/test/embedding_test.fasta')
X_test_embedding = test_embedding
y_test = df2.Target
X_test = X_test.iloc[:,3:-1]
X_test_pt5=np.asarray(X_test).astype('float32')
members = load_all_models(['ProtT5','Embedding'])
for i in range(len(members)):
model = members[i]
for layer in model.layers:
layer.trainable = False
prot_pred_test = get_predictions(members[0],X_test_pt5)
emb_pred_test = get_predictions(members[1],X_test_embedding)
X_stacked_test = pd.concat([prot_pred_test,emb_pred_test],axis=1)
y_stacked_test = y_test
# evaluate loaded model on test data
y_pred = model_final.predict(X_stacked_test)
y_pred = (y_pred > 0.50) #decision threshold here is 0.5
y_pred = np.array(y_pred)
mcc=matthews_corrcoef(y_stacked_test, y_pred)
print("Matthews Correlation : ",mcc)
cm=confusion_matrix(y_stacked_test, y_pred)
print("Confusion Matrix : \n",cm)
print("Sensitivity : ",cm[1][1]/(cm[1][1]+cm[1][0]))
print("Specificity: ",cm[0][0]/(cm[0][0]+cm[0][1]))
roc_auc = roc_auc_score(y_stacked_test,y_pred)
print("AUROC : ", roc_auc)