Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

about the centre_loss #1

Open
longzeyilang opened this issue Jul 19, 2018 · 2 comments
Open

about the centre_loss #1

longzeyilang opened this issue Jul 19, 2018 · 2 comments

Comments

@longzeyilang
Copy link

longzeyilang commented Jul 19, 2018

Hi, I have a question:
def call(self, x, mask=None): ## x[0] is Nx2, x[1] is Nx10 onehot, self.centers is 10x2 delta_centers = K.dot(K.transpose(x[1]), (K.dot(x[1], self.centers) - x[0])) # 10x2 denominator = K.sum(K.transpose(x[1]), axis=1, keepdims=True) + 1 delta_centers /= denominator new_centers = self.centers - self.alpha_center * delta_centers self.add_update((self.centers, new_centers), x) self.result = (K.dot(x[1], self.centers) - x[0]) self.result = K.sum(self.result ** 2, axis=1, keepdims=True) return self.result
the call function has already contained the center loss. But in the below:
self.model.compile(optimizer=optimizer, loss=[losses.categorical_crossentropy, self.center_loss], loss_weights=[1, self.lambda_centerloss])

the compile get center_loss again and again, is that true?

@Kakoedlinnoeslovo
Copy link
Owner

Kakoedlinnoeslovo commented Jul 26, 2018

Hello, @longzeyilang, yes, when we write call function we just write the rules of how our value will be computed, so than if we want to apply our CenterLoss, we specify it in the compile() function.
https://keras.io/models/model/

@wangjue-wzq
Copy link

I have some problem when I use centerloss in image classification with keras.
1、in custom_vgg_model.fit(y = {'fc2':y_train,'predictions':y_train}),'fc2':y_train have error that

ValueError: Error when checking target: expected fc2 to have shape (None, 4096) but got array with shape (6300, 45)

y_train is the labels. If I do like this custom_vgg_model.fit(y = {'fc2':dummy1,'predictions':y_train}),the model will train successful. The dummy1 have same shape with 'fc2' output(feature).
dummy1 = np.zeros((y_train.shape[0],4096))
But can't improve the accuracy of the model.So it is wrong coding.
2、It is wrong to use ImageDataGenerator.flow(x = X_train, y = {'fc2':dummy1,'predictions':y_train}, batch_size=batch_Sizes) .So I can't expand my data.

image_input = Input(shape=(224, 224, 3))
model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
model.summary()
last_layer = model.get_layer('fc2').output
feature = last_layer
out = Dense(num_classes,activation = 'softmax',name='predictions')(last_layer)
custom_vgg_model = Model(inputs = image_input, outputs = [out,feature])
custom_vgg_model.summary()
for layer in custom_vgg_model.layers[:-3]:
    layer.trainable = False
custom_vgg_model.layers[3].trainable    
sgd = optimizers.SGD(lr=learn_Rate,decay=decay_Rate,momentum=0.9,nesterov=True)
center_loss = lossclass.get_center_loss(alpha=0.5, num_classes=45,feature_dim = 4096)
custom_vgg_model.compile(loss={'predictions': "categorical_crossentropy", 'fc2': center_loss},
                         loss_weights={'fc2': 1, 'predictions': 1},optimizer= sgd,
                                      metrics={'predictions': 'accuracy'})
t=time.time()
dummy1 = np.zeros((y_train.shape[0],4096))
dummy2 = np.zeros((y_test.shape[0],4096))
if not data_Augmentation:
    hist = custom_vgg_model.fit(x = X_train,y = {'fc2':y_train,'predictions':y_train},batch_size=batch_Sizes,
                                epochs=epoch_Times, verbose=1,validation_data=(X_test, {'fc2':y_test,'predictions':y_test}))
else:
    datagen = ImageDataGenerator(
            featurewise_center=False,
            samplewise_center=False,
            featurewise_std_normalization=False,
            samplewise_std_normalization=False,
            zca_whitening=False,
            rotation_range=20,
            width_shift_range=0.2,
            height_shift_range=0.2,
            horizontal_flip=True,
            vertical_flip=True,
            rescale=None,
            preprocessing_function=None,
            data_format=None)
    print('x_train.shape[0]:{:d}'.format(X_train.shape[0]))
    hist = custom_vgg_model.fit_generator(datagen.flow(x = X_train, y = {'fc2':dummy1,'predictions':y_train}, batch_size=batch_Sizes),
                                          steps_per_epoch=X_train.shape[0]/batch_Sizes,epochs=epoch_Times,
                                                                       verbose=1, validation_data=(X_test, {'fc2':y_test,'predictions':y_test}))
# lossclass.py
def _center_loss_func(labels,features, alpha, num_classes, centers, feature_dim):
    assert feature_dim == features.get_shape()[1]    
    labels = K.argmax(labels, axis=1)
    labels = tf.to_int32(labels)
    centers_batch = K.gather(centers, labels)
    diff = (1 - alpha) * (centers_batch - features)
    centers = tf.scatter_sub(centers, labels, diff)
    centers_batch = K.gather(centers, labels)
    loss = K.mean(K.square(features - centers_batch))
    return loss

def get_center_loss(alpha, num_classes, feature_dim):
    """Center loss based on the paper "A Discriminative 
       Feature Learning Approach for Deep Face Recognition"
       (http://ydwen.github.io/papers/WenECCV16.pdf)
    """    
    # Each output layer use one independed center: scope/centers
    centers = K.zeros([num_classes, feature_dim], dtype='float32')
    @functools.wraps(_center_loss_func)
    def center_loss(y_true, y_pred):
        return _center_loss_func(y_true, y_pred, alpha, num_classes, centers, feature_dim)
    return center_loss

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants