-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_atari.py
executable file
·128 lines (108 loc) · 4.9 KB
/
train_atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Inspired from https://github.com/raillab/dqn
import random
import numpy as np
import gym
from dqn.agent import DQNAgent
from dqn.replay_buffer import ReplayBuffer
from dqn.wrappers import *
import torch
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DQN Atari')
parser.add_argument('--load-checkpoint-file', type=str, default=None,
help='Where checkpoint file should be loaded from (usually results/checkpoint.pth)')
args = parser.parse_args()
# If you have a checkpoint file, spend less time exploring
if(args.load_checkpoint_file):
eps_start= 0.01
else:
eps_start= 1
hyper_params = {
"seed": 42, # which seed to use
"env": "PongNoFrameskip-v4", # name of the game
"replay-buffer-size": int(5e3), # replay buffer size
"learning-rate": 1e-4, # learning rate for Adam optimizer
"discount-factor": 0.99, # discount factor
"dqn_type":"neurips",
# total number of steps to run the environment for
"num-steps": int(1e6),
"batch-size": 32, # number of transitions to optimize at the same time
"learning-starts": 10000, # number of steps before learning starts
"learning-freq": 1, # number of iterations between every optimization step
"use-double-dqn": True, # use double deep Q-learning
"target-update-freq": 1000, # number of iterations between every target network update
"eps-start": eps_start, # e-greedy start threshold
"eps-end": 0.01, # e-greedy end threshold
"eps-fraction": 0.1, # fraction of num-steps
"print-freq": 10
}
np.random.seed(hyper_params["seed"])
random.seed(hyper_params["seed"])
assert "NoFrameskip" in hyper_params["env"], "Require environment with no frameskip"
env = gym.make(hyper_params["env"])
env.seed(hyper_params["seed"])
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env)
env = FireResetEnv(env)
env = WarpFrame(env)
env = PyTorchFrame(env)
env = ClipRewardEnv(env)
env = FrameStack(env, 4)
env = gym.wrappers.Monitor(
env, './video/', video_callable=lambda episode_id: episode_id % 50 == 0, force=True)
replay_buffer = ReplayBuffer(hyper_params["replay-buffer-size"])
agent = DQNAgent(
env.observation_space,
env.action_space,
replay_buffer,
use_double_dqn=hyper_params["use-double-dqn"],
lr=hyper_params['learning-rate'],
batch_size=hyper_params['batch-size'],
gamma=hyper_params['discount-factor'],
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
dqn_type=hyper_params["dqn_type"]
)
if(args.load_checkpoint_file):
print(f"Loading a policy - { args.load_checkpoint_file } ")
agent.policy_network.load_state_dict(
torch.load(args.load_checkpoint_file))
eps_timesteps = hyper_params["eps-fraction"] * \
float(hyper_params["num-steps"])
episode_rewards = [0.0]
state = env.reset()
for t in range(hyper_params["num-steps"]):
fraction = min(1.0, float(t) / eps_timesteps)
eps_threshold = hyper_params["eps-start"] + fraction * \
(hyper_params["eps-end"] - hyper_params["eps-start"])
sample = random.random()
if(sample > eps_threshold):
# Exploit
action = agent.act(state)
else:
# Explore
action = env.action_space.sample()
next_state, reward, done, info = env.step(action)
agent.memory.add(state, action, reward, next_state, float(done))
state = next_state
episode_rewards[-1] += reward
if done:
state = env.reset()
episode_rewards.append(0.0)
if t > hyper_params["learning-starts"] and t % hyper_params["learning-freq"] == 0:
agent.optimise_td_loss()
if t > hyper_params["learning-starts"] and t % hyper_params["target-update-freq"] == 0:
agent.update_target_network()
num_episodes = len(episode_rewards)
if done and hyper_params["print-freq"] is not None and len(episode_rewards) % hyper_params[
"print-freq"] == 0:
mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
print("********************************************************")
print("steps: {}".format(t))
print("episodes: {}".format(num_episodes))
print("mean 100 episode reward: {}".format(mean_100ep_reward))
print("% time spent exploring: {}".format(int(100 * eps_threshold)))
print("********************************************************")
torch.save(agent.policy_network.state_dict(), f'checkpoint.pth')
np.savetxt('rewards_per_episode.csv', episode_rewards,
delimiter=',', fmt='%1.3f')