-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_retriever.py
380 lines (314 loc) · 15.9 KB
/
train_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import torch
from torch import nn
from transformers import AutoTokenizer, AutoModel
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
import os
import json
from collections import defaultdict
import random
import wandb
import sys
import numpy as np
from utils.data_utils import *
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Train a prompt retriever model')
parser.add_argument('--total_samples', type=int, default=10000,
help='Total number of samples for training')
parser.add_argument('--learning_rate', type=float, default=2e-5,
help='Learning rate for training')
parser.add_argument('--batch_size', type=int, default=32,
help='Batch size for training')
parser.add_argument('--num_epochs', type=int, default=15,
help='Number of training epochs')
parser.add_argument('--model_name', type=str,
default="princeton-nlp/sup-simcse-roberta-base",
help='Path to the pretrained model')
parser.add_argument('--state_dir', type=str,
default="library_results/llama3/states",
help='Directory containing state files')
parser.add_argument('--output_model', type=str,
default='prompt_classifier_model.pth',
help='Path to save the trained model')
parser.add_argument('--project_name', type=str, default="retriever",
help='Project name for wandb logging')
return parser.parse_args()
class PromptClassifier(nn.Module):
def __init__(self, sentence_bert):
super().__init__()
self.sentence_bert = sentence_bert
self.classifier = nn.Sequential(
nn.Linear(sentence_bert.config.hidden_size * 2, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 2)
)
def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2):
outputs1 = self.sentence_bert(input_ids1, attention_mask=attention_mask1)
outputs2 = self.sentence_bert(input_ids2, attention_mask=attention_mask2)
pooled_output1 = outputs1.last_hidden_state[:, 0]
pooled_output2 = outputs2.last_hidden_state[:, 0]
concatenated = torch.cat((pooled_output1, pooled_output2), dim=1)
logits = self.classifier(concatenated)
return logits
class PromptRetriever:
def __init__(self, model_path, device=None, batch_size=128, model_name=None):
self.model_name = model_name
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.sentence_bert = AutoModel.from_pretrained(self.model_name)
self.model = PromptClassifier(self.sentence_bert)
self.model.load_state_dict(torch.load(model_path))
self.device = device if device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
self.batch_size = batch_size
self.icl_pool_embedding = None
def preprocess_icl_pool(self, icl_pool):
icl_inputs = self._tokenize(icl_pool)
with torch.no_grad():
outputs1 = self.sentence_bert(icl_inputs['input_ids'].to(self.device),
attention_mask=icl_inputs['attention_mask'].to(self.device))
self.icl_pool_embedding = outputs1.last_hidden_state[:, 0]
def retrieve(self, natural_prompt, icl_pool):
if self.icl_pool_embedding is None:
self.preprocess_icl_pool(icl_pool)
scores = []
natural_inputs = self._tokenize(natural_prompt)
with torch.no_grad():
outputs1 = self.sentence_bert(natural_inputs['input_ids'].to(self.device),
attention_mask=natural_inputs['attention_mask'].to(self.device))
natural_embedding = outputs1.last_hidden_state[:, 0]
concatenated = torch.cat((natural_embedding.repeat(len(icl_pool), 1),
self.icl_pool_embedding), dim=1)
logits = self.model.classifier(concatenated)
batch_scores = torch.softmax(logits, dim=1)[:, 1].cpu().numpy()
for i, (prompt, score) in enumerate(zip(icl_pool, batch_scores)):
scores.append((prompt, float(score), i))
return scores
def _tokenize(self, texts):
if isinstance(texts, str):
texts = [texts]
return self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
class DataPreparation:
@staticmethod
def prepare_data(state_dir, total_samples=10000):
file_lists = []
icl_prompts = defaultdict(list)
for filename in tqdm(os.listdir(state_dir)):
if filename.endswith("icl_prompts.json"):
file_lists.append(os.path.join(state_dir, filename))
for file in file_lists:
with open(file, "r") as f:
tmp_prompts = json.load(f)
task_name = file.split("_tv")[0].split("/")[-1]
icl_prompts[task_name] += tmp_prompts
with open("dataset_files/natural_prompts_manual.json", "r") as f:
natural_prompts = json.load(f)
tasks = ["superglue_rte", "superglue_wic", "glue_qnli", "glue_sst2", "glue_mnli","arc_challenge", "bbh_boolean_expressions", "bbh_date_understanding", "bbh_reasoning_about_colored_objects", "bbh_temporal_sequences", "boolq", "commonsense_qa", "hellaswag", "openbookqa", "math_qa", "mmlu_pro_math","bbq_age", "crows_pairs", "ethics_justice", "ethics_commonsense"]
completion_prompts = defaultdict(list)
for task in tasks:
data = load_dataset(task, "dataset_files")
word_pairs = data['train'][np.random.choice(len(data['train']), 2, replace=False)]
for p in natural_prompts[task][:10]:
for i in range(2):
completion_prompts[task].append(p.format(input=word_pairs["input"][i])+"\nA:")
task_pairs = defaultdict(list)
for task in icl_prompts.keys():
natural_task_prompts = completion_prompts[task]
icl_task_prompts = icl_prompts[task]
for natural_prompt in natural_task_prompts:
for icl_prompt in icl_task_prompts:
task_pairs[task].append((natural_prompt, icl_prompt, 1))
other_tasks = [t for t in icl_prompts.keys() if t != task]
for t in other_tasks:
random_icl_prompt = random.sample(icl_prompts[t], 10)
for r_icl_prompt in random_icl_prompt:
task_pairs[task].append((natural_prompt, r_icl_prompt, 0))
balanced_task_pairs = defaultdict(lambda: defaultdict(list))
for task, pairs in task_pairs.items():
for pair in pairs:
label = pair[2]
balanced_task_pairs[task][label].append(pair)
task_num = len(list(task_pairs.keys()))
train_samples_per_task_per_label = int(total_samples / task_num / 2)
test_samples_per_task_per_label = 5
test_set, train_set, valid_set = [], [], []
for task, label_pairs in balanced_task_pairs.items():
for label, pairs in label_pairs.items():
random.shuffle(pairs)
test_set.extend(pairs[:test_samples_per_task_per_label])
train_set.extend(pairs[test_samples_per_task_per_label:test_samples_per_task_per_label+train_samples_per_task_per_label])
valid_set.extend(pairs[-5:])
random.shuffle(train_set)
random.shuffle(valid_set)
random.shuffle(test_set)
dataset = {
"train": train_set,
"test": test_set,
"valid": valid_set
}
with open("dataset_files/train_data.json", "w") as f:
json.dump(dataset, f, indent=4)
return dataset
def prepare_data_icl(state_dir, total_samples=1000):
file_lists = []
icl_prompts = defaultdict(list)
for filename in tqdm(os.listdir(state_dir)):
if filename.endswith("icl_prompts.json"):
file_lists.append(os.path.join(state_dir, filename))
for file in file_lists:
with open(file, "r") as f:
tmp_prompts = json.load(f)
task_name = file.split("_tv")[0].split("/")[-1]
icl_prompts[task_name] += tmp_prompts
prompt = "Q: {input}\nA:"
completion_prompts = defaultdict(list)
for task_name in icl_prompts.keys():
data = load_dataset(task_name, "dataset_files")
word_pairs = data['train'][np.random.choice(len(data['train']), 2, replace=False)]
for i in range(2):
completion_prompts[task_name].append(prompt.format(input=word_pairs["input"][i]))
task_pairs = defaultdict(list)
for task in icl_prompts.keys():
natural_task_prompts = completion_prompts[task]
icl_task_prompts = icl_prompts[task]
for natural_prompt in natural_task_prompts:
for icl_prompt in icl_task_prompts:
task_pairs[task].append((natural_prompt, icl_prompt, 1))
other_tasks = [t for t in icl_prompts.keys() if t != task]
for t in other_tasks:
random_icl_prompt = random.sample(icl_prompts[t], 10)
for r_icl_prompt in random_icl_prompt:
task_pairs[task].append((natural_prompt, r_icl_prompt, 0))
balanced_task_pairs = defaultdict(lambda: defaultdict(list))
for task, pairs in task_pairs.items():
for pair in pairs:
label = pair[2]
balanced_task_pairs[task][label].append(pair)
task_num = len(list(task_pairs.keys()))
train_samples_per_task_per_label = int(total_samples / task_num / 2)
test_samples_per_task_per_label = 5
test_set, train_set, valid_set = [], [], []
for task, label_pairs in balanced_task_pairs.items():
for label, pairs in label_pairs.items():
random.shuffle(pairs)
test_set.extend(pairs[:test_samples_per_task_per_label])
train_set.extend(pairs[test_samples_per_task_per_label:test_samples_per_task_per_label+train_samples_per_task_per_label])
valid_set.extend(pairs[-5:])
random.shuffle(train_set)
random.shuffle(valid_set)
random.shuffle(test_set)
dataset = {
"train": train_set,
"test": test_set,
"valid": valid_set
}
with open("dataset_files/train_data_icl.json", "w") as f:
json.dump(dataset, f, indent=4)
return dataset
class Trainer:
def __init__(self, model, train_dataloader, val_dataloader, device, learning_rate=2e-6):
self.model = model
self.train_dataloader = train_dataloader
self.val_dataloader = val_dataloader
self.device = device
self.optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=0.01)
self.criterion = nn.CrossEntropyLoss()
def train(self, num_epochs=15, project_name="retriever"):
wandb.init(project=project_name, config={
"learning_rate": self.optimizer.param_groups[0]['lr'],
"epochs": num_epochs,
"batch_size": self.train_dataloader.batch_size
})
wandb.watch(self.model)
for epoch in range(num_epochs):
self.model.train()
total_loss = 0
for batch in tqdm(self.train_dataloader, desc=f"Epoch {epoch+1}"):
input_ids1, attention_mask1, input_ids2, attention_mask2, labels = [b.to(self.device) for b in batch]
self.optimizer.zero_grad()
outputs = self.model(input_ids1, attention_mask1, input_ids2, attention_mask2)
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.step()
total_loss += loss.item()
avg_train_loss = total_loss / len(self.train_dataloader)
print(f"Epoch {epoch+1}, Loss: {avg_train_loss}")
wandb.log({"train_loss": avg_train_loss, "epoch": epoch+1})
val_accuracy, avg_val_loss = self.validate()
print(f"Validation Accuracy: {val_accuracy}%")
print(f"Validation Loss: {avg_val_loss}")
wandb.log({
"val_accuracy": val_accuracy,
"val_loss": avg_val_loss,
"epoch": epoch+1
})
wandb.finish()
def validate(self):
self.model.eval()
correct = 0
total = 0
val_loss = 0
with torch.no_grad():
for batch in self.val_dataloader:
input_ids1, attention_mask1, input_ids2, attention_mask2, labels = [b.to(self.device) for b in batch]
outputs = self.model(input_ids1, attention_mask1, input_ids2, attention_mask2)
loss = self.criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_accuracy = 100 * correct / total
avg_val_loss = val_loss / len(self.val_dataloader)
return val_accuracy, avg_val_loss
def prepare_dataloader(tokenizer, data_set, batch_size=32):
natural_prompts, icl_prompts, labels = zip(*data_set)
inputs1 = tokenizer(list(icl_prompts), padding=True, truncation=True, return_tensors="pt")
inputs2 = tokenizer(list(natural_prompts), padding=True, truncation=True, return_tensors="pt")
labels = torch.tensor(labels)
dataset = TensorDataset(inputs1['input_ids'], inputs1['attention_mask'],
inputs2['input_ids'], inputs2['attention_mask'], labels)
return DataLoader(dataset, batch_size=batch_size, shuffle=True)
def main():
args = parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Prepare data
data = DataPreparation.prepare_data(
state_dir=args.state_dir,
total_samples=args.total_samples
)
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
sentence_bert = AutoModel.from_pretrained(args.model_name)
# Prepare dataloaders
train_dataloader = prepare_dataloader(tokenizer, data["train"], batch_size=args.batch_size)
val_dataloader = prepare_dataloader(tokenizer, data["valid"], batch_size=args.batch_size)
test_dataloader = prepare_dataloader(tokenizer, data["test"], batch_size=args.batch_size)
# Initialize model
model = PromptClassifier(sentence_bert)
model.to(device)
# Train model
trainer = Trainer(model, train_dataloader, val_dataloader, device,
learning_rate=args.learning_rate)
trainer.train(num_epochs=args.num_epochs, project_name=args.project_name)
# Save model
torch.save(model.state_dict(), args.output_model)
# Evaluate model
retriever = PromptRetriever(args.output_model, device, model_name=args.model_name)
accuracy = evaluate_classifier(retriever.model, test_dataloader, device)
print(f"Final Test Accuracy: {100 * accuracy}%")
def evaluate_classifier(model, dataloader, device):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for batch in dataloader:
input_ids1, attention_mask1, input_ids2, attention_mask2, labels = [b.to(device) for b in batch]
outputs = model(input_ids1, attention_mask1, input_ids2, attention_mask2)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return correct / total
if __name__ == "__main__":
main()