-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSchrodinger1D_multiband_ZB_Main.m
511 lines (427 loc) · 20.4 KB
/
Schrodinger1D_multiband_ZB_Main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% last update 29 November 2021, lne %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Have a look in the book "Multi-Band Efective Mass Approximations"
% p145
% 4.5.2 Ellipticity Criteria
% => There are explanations how to deal with the spurious solutions...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program solves the Schrodinger equation with m(E,z) using different algorithms:
% -> FDM (Finite Difference Method)
% and / or
% -> Scaning/Shooting method
%
% The non-parabolicity is implemented via the kp model using the Kane or Luttinger approach
% The HH band remains ALL THE TIME parabolic in ZB-001 growth and even with strain
% A strain model is included. It basically shifts the conduction and valence band edge
% but also influences the coupling bw LH/SO in the kp 6bands.
% The strain is mainly interesting for InGaAs/GaAs heterostructures
% to do:
% include the strain in the kp 8band
% check the kp 6bands with DKK notation
% check that HH is still parabolic if the confinemtent is along x-axis or y-axis
% -> II-VI and cubic nitride material parameters are available but should
% be grabt in the "Library.m" file
% -> Wurtzite parameter are also availables but the code isn't optimized for it.
% In the "Library.m" file, the WZ table must be open and the meaningfull parameters
% must be taken. Also, the electric field has to be handle...
% -> Additionnal material can be added in the "materialDB_ZB.csv" file
clear all
close all
clc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
h=6.62606896E-34; %% Planck constant J.s
hbar=h/(2*pi);
e=1.602176487E-19; %% charge de l electron Coulomb
m0=9.10938188E-31; %% electron mass kg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0 for turn off
% 1 for turn on
% Diagonalization of the Hamiltonian with Finite Difference Method (FDM)
FDM_kp1bandCB = 0; % mass=m(z) => parabolic band
FDM_kp1bandHH = 0; % Good to solve HH that is always parabolic even with strain
FDM_kp1bandLH = 0; % Good to solve LH if Dso is large otherwise not valid
FDM_kp2bands_Kane = 1; % Good to solve Ec only
FDM_kp3bands_Kane = 0; % Good to solve Ec only
FDM_kp6bands_Luttinger = 1; % Good to solve HH, LH and SO in 1+2 band because HH is not coupled to the other bands in ZB-001 (even with strain)
FDM_kp8bands_Luttinger = 0; % NOT WELL WORKING!!! "spurious" solution but electron solutions are too high as well. Increasing the resolution dz helps
% Shooting/Scanning in Energy method (Euler)
ShootingCB_1band_Kane = 0; % mass=m(z) => parabolic band
ShootingHH_1band = 0; % Good to solve HH that is always parabolic in ZB-001, even with strain
ShootingCB_2bands_Kane = 0; % Good to solve Ec
ShootingCB_3bands_Kane = 0; % Good to solve Ec
ShootingCB_Luttinger = 0; % Good to solve Ec but gives different results compare to Kane s model because the mass is slightly different
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
StrainModel = 0; % Activate Strain model
PrintResultsISB = 0; % Switch to print or not the ISB dipoles on the shell
PlotMass = 1; % PLot meff in the Kane and Luttinger model
PlotVB = 1; % plot the valence band
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n=3; % number of solution asked per model
ScF=0.1; % scaling factor to plot the wave function [Without Dimension]
dz=1E-10; % resolution of the grid [m]
F0=0;%-6e7; % Electric field [Volt/meter]
T=300; % Temperature [Kelvin], react on the band gap Eg only
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Library; % load material parameter DB from "materialDB_ZB.csv"
ExtractParameters; % extract parameter from the Library
TernaryAlloy; % compute the ternary alloy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% import the layer structure file %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% first column is the material used from the "library"
% second column is the length of the layer in nm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
input_file;
% substrate=GaAs; % Important for the Strain model (Si, GaAs, InP, InAs, GaSb)
% M=[
% AlGaAs40 5
% GaAs 20
% AlGaAs40 5
% ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% NOTHING TO CHANGE ANYMORE !!! %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% Grabbing the parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
zt = M(:,end)*1E-9; % conversion of the length from Angstrom to meter
Egt = M(:,idx_Eg6c) - (M(:,idx_alphaG)*T^2) ./ (T+M(:,idx_betaG)); %Eg = Eg0 - (a*T.^2)./(T + b);
VBOt= M(:,idx_VBO);
CBOt= Egt+VBOt; % CBO form band gap difference and temperature
Dsot= M(:,idx_Dso); % Spin-Orbit shift band parameter
Ft = M(:,idx_F); % Gammac Luttinger parameter for the electron
g1t = M(:,idx_g1); % Gamma1 Luttinger parameter
g2t = M(:,idx_g2); % Gamma2 Luttinger parameter
g3t = M(:,idx_g3); % Gamma3 Luttinger parameter
EPt_K=M(:,idx_EP_K); % EP Kane
EPt_L=M(:,idx_EP_L); % EP Luttinger
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Strain Model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
at = M(:,idx_a); % lattice parameter
act = M(:,idx_ac); % Conduction band strain offset parameter
avt = M(:,idx_av); % Valence band strain offset parameter
bvt = M(:,idx_bv); % Valence band strain offset parameter
c11t = M(:,idx_c11); % strain parameter
c12t = M(:,idx_c12); % strain parameter
a0 = substrate(idx_a);
if StrainModel == 1
exxt = (a0-at)/a0; % eyyt = exxt;
ezzt = -2*c12t./c11t.*exxt;
else
exxt = (a0-at)/a0 * 0; % eyyt = exxt;
ezzt = -2*c12t./c11t.*exxt;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Discretisation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% here, I descretize the grid z, the potential V0 and the mass me
z(1)=0; V0(1)=CBOt(1); Eg(1)=Egt(1);Dso(1)=Dsot(1);F(1)=Ft(1);
g1(1)=g1t(1);g2(1)=g2t(1);g3(1)=g3t(1); EP_K(1)=EPt_K(1); EP_L(1)=EPt_L(1); %me(1)=met(1);% mhh(1)=mhh_t(1);
ac=act(1); av=avt(1); bv=bvt(1); exx=exxt(1); ezz=ezzt(1);
for i=1:length(zt)
zv = (z(end)+dz) : dz : (z(end) + zt(i)) ;
z = [ z zv ];
V0 = [ V0 ones(size(zv)) * CBOt(i) ];
Eg = [ Eg ones(size(zv)) * Egt(i) ];
EP_K= [ EP_K ones(size(zv)) * EPt_K(i) ];
EP_L= [ EP_L ones(size(zv)) * EPt_L(i) ];
Dso = [ Dso ones(size(zv)) * Dsot(i) ];
F = [ F ones(size(zv)) * Ft(i) ];
g1 = [ g1 ones(size(zv)) * g1t(i) ];
g2 = [ g2 ones(size(zv)) * g2t(i) ];
g3 = [ g3 ones(size(zv)) * g3t(i) ];
ac = [ ac ones(size(zv)) * act(i) ];
av = [ av ones(size(zv)) * avt(i) ];
bv = [ bv ones(size(zv)) * bvt(i) ];
exx = [ exx ones(size(zv)) * exxt(i) ];
ezz = [ ezz ones(size(zv)) * ezzt(i) ];
end
V0=V0-min(V0); % Shift the band in order to get the bottom of the well at zero
V0=(F0*z)+V0; % adding the electric field to the potential
eyy = exx;
DCBO = -abs(ac).*(exx+eyy+ezz) ; % shift of the CB due to strain
DVBOHH = +abs(av).*(exx+eyy+ezz) - abs(bv).*(exx-ezz) ; % shift of the VB-HH due to strain
DVBOLH = +abs(av).*(exx+eyy+ezz) + abs(bv).*(exx-ezz) ; % shift of the VB-LH due to strain
DVBOSO = +abs(av).*(exx+eyy+ezz) ; % shift of the VB-SO due to strain
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% Discretisation of the Masses %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ne=10000;
EE=linspace(min(V0),max(V0)+0.2,Ne);
EEmat = repmat(EE' ,[1 length(z)]);
V0mat = repmat(V0 , [length(EE) 1]);
Egmat = repmat(Eg , [length(EE) 1]);
Dsomat = repmat(Dso, [length(EE) 1]);
Fmat = repmat(F , [length(EE) 1]);
EP=EP_K;
EPmat = repmat(EP , [length(EE) 1]);
meK2 = 1 ./ ( 1 + EPmat ./ (EEmat + Egmat-V0mat+Dsomat/3) ); % m(z,E) in the 2 bands Kane s model
meK3 = 1 ./ ( 1 + 2/3 * EPmat ./ (EEmat+Egmat-V0mat) + 1/3*EPmat./(EEmat+Egmat+Dsomat-V0mat) ); % m(z,E) in the 3 bands Kane s model
EP=EP_L;
EPmat = repmat(EP , [length(EE) 1]);
%meL = 1./(1 + 2*Fmat + EPmat.*(EEmat+Egmat-V0mat + 2*Dsomat/3)./((EEmat+Egmat-V0mat).*(EEmat+Egmat-V0mat + Dsomat)) ); % m(z,E) in the 8 bands Luttinger s model
meL = 1./(1 + 2*Fmat + 2/3 * EPmat ./ (EEmat+Egmat-V0mat) + 1/3*EPmat./(EEmat+Egmat+Dsomat-V0mat) ); % m(z,E) in the 8 bands Luttinger s model
mhhL= 1 ./ (g1-2*g2);
mlhL= 1 ./ (g1+2*g2);
if PlotMass == 1
figure('position',[10 100 800 500],'color','w');
subplot(1,1,1,'fontsize',15)
hold on;grid on;box on;
idx=round(length(z)/2);
%idx=1;
plot(EE,meK2(:,idx),'b-')
plot(EE,meK3(:,idx),'g-')
plot(EE,meL(:,idx) ,'r-')
set(gca,'ytick',0:0.005:0.2)
legend('Kane 2bands','Kane 3bands','Luttinger')
xlabel('Energy (eV)')
ylabel('meff')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% Selection of the model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E=[];
j=0;FS=15;FSt=10;
s{1}=strcat('\fontsize{',num2str(FSt),'}\color{blue}Potential');
s{2}=strcat('\fontsize{',num2str(FSt),'}\color{blue}------------');
col=[
1 0 0
0 1 0
%0 0 1
0 1 1
1 0 1
1 1 0
0 0 0
0.5 0.5 0.5
1 0.5 1
0 0.8 1
0.8 0 1
0 1 0.8
1 0.5 0.3
0.8 0 0.3
];
if FDM_kp1bandCB==1
tic
j=j+1;
Mass=meK2(1,:); % m=m(z)
%Mass=meK3(1,:); % m=m(z)
%Mass=meL(1,:); % m=m(z)
[E{j},psi{j}] = Schrod_1band_f(z,V0+DCBO,Mass,n); % m = m(z)
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM kp1bandCB: m=m(z)');
display(strcat('-> FDM_kp1bandCB =',num2str(toc),'sec'))
end
if FDM_kp1bandHH==1
tic
j=j+1;
Mass=mhhL(1,:); % m=m(z) % the HH are all the time parabolic in ZB-001, even with strain!
[E{j},psi{j}] = Schrod_1band_f(z,-(V0-Eg+DVBOHH),Mass,n); % m = m(z)
E{j}=-E{j};
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM kp1bandHH: m=m(z)');
display(strcat('-> FDM_kp1bandHH =',num2str(toc),'sec'))
end
if FDM_kp1bandLH==1
tic
j=j+1;
Mass=mlhL(1,:); % m=m(z)% the LH can be almost parabolic if Dso is large and without strain!
[E{j},psi{j}] = Schrod_1band_f(z,-(V0-Eg+DVBOLH),Mass,n); % m = m(z)
E{j}=-E{j};
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM kp1bandLH: m=m(z)');
display(strcat('-> FDM_kp1bandLH =',num2str(toc),'sec'))
end
if FDM_kp2bands_Kane==1
tic
j=j+1;
[E{j},psi{j}] = Schrod_2bands_Kane_f(z,V0,Eg,EP_K,Dso,n,ac,av,bv,exx,ezz);
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM kp2bands Kane: m=m(z,E)');
display(strcat('-> FDM_kp2bands_Kane =',num2str(toc),'sec'))
end
if FDM_kp3bands_Kane==1
tic
j=j+1;
[E{j},psi{j}] = Schrod_3bands_Kane_f(z,V0,Eg,EP_K,Dso,n,ac,av,bv,exx,ezz);
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM kp3bands Kane: m=m(z,E)');
display(strcat('-> FDM_kp3bands_Kane =',num2str(toc),'sec'))
end
if FDM_kp6bands_Luttinger==1
tic
j=j+1;
Mass=mhhL(1,:); % m=m(z)
[E{j},psi{j}] = Schrod_1band_f(z,-(V0-Eg+DVBOHH),Mass,n); % m = m(z) the HH are all the time parabolic in ZB-001, even with strain!
E{j}=-E{j};
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM HH 1band: m=m(z)');
j=j+1;
[E{j},psi{j}] = Schrod_2bands_Luttinger_Kohn_f(z,V0,Eg,Dso,g1,g2,g3,n,av,bv,exx,ezz);
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM LH/SO kp6bands Luttinger: m=m(z,E)');
display(strcat('-> FDM_kp6bands_Luttinger =',num2str(toc),'sec'))
end
if FDM_kp8bands_Luttinger==1
tic
j=j+1;
[E{j},psi{j},Ev,psi_v] = Schrod_3bands_Luttinger_Kohn_f(z,V0,Eg,EP_L,Dso,F,g1,g2,g3,n);
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM kp8bands Luttinger: m=m(z,E)');
j=j+1;
E{j}=Ev;psi{j}=psi_v;
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> FDM kp8bands Luttinger: m=m(z,E)');
display(strcat('-> FDM kp8bands_Luttinger =',num2str(toc),'sec'))
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ShootingCB_1band_Kane==1
dE=0.02;
precision=1e-6;
tic
j=j+1;
Mass=meK2(1,:); % m=m(z)
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> ShootingCB 1band Kane: m=m(z)');
[E{j},psi{j}] = Schrod_1band_shoot_f(z,V0+DCBO,Mass,n,dE,precision);
display(strcat('-> ShootingCB_1band_Kane =',num2str(toc),'sec'))
end
if ShootingHH_1band==1
dE=0.02;
precision=1e-5;
tic
j=j+1;
Mass=mhhL; % m=m(z) % the HH are all the time parabolic in ZB-001, even with strain!
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> ShootingHH 1band: m=m(z)');
[E{j},psi{j}] = Schrod_1band_shoot_f(z,-(V0-Eg+DVBOHH),Mass,n,dE,precision);
E{j}=-E{j};
display(strcat('-> SShootingHH_1band =',num2str(toc),'sec'))
end
if ShootingCB_2bands_Kane==1
dE=0.02;
precision=1e-5;
tic
j=j+1;
Mass=meK2; % m=m(z,E)
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> ShootingCB 2bands Kane: m=m(z,E)');
[E{j},psi{j}] = Schrod_Nbands_shoot_f(z,V0+DCBO,Mass,n,EE,dE,precision);
display(strcat('-> ShootingCB_2bands_Kane =',num2str(toc),'sec'))
end
if ShootingCB_3bands_Kane==1
dE=0.02;
precision=1e-5;
tic
j=j+1;
Mass=meK3; % m=m(z,E)
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> ShootingCB 3bands Kane: m=m(z,E)');
[E{j},psi{j}] = Schrod_Nbands_shoot_f(z,V0+DCBO,Mass,n,EE,dE,precision);
display(strcat('-> ShootingCB_3bands_Kane =',num2str(toc),'sec'))
end
if ShootingCB_Luttinger==1
dE=0.02;
precision=1e-5;
tic
j=j+1;
Mass=meL; % m=m(z,E)
s{j+2}=strcat('\fontsize{',num2str(FSt),'}\color[rgb]{',num2str(col(j,:)),'}-> ShootingCB Luttinger: m=m(z,E)');
[E{j},psi{j}] = Schrod_Nbands_shoot_f(z,V0+DCBO,Mass,n,EE,dE,precision);
display(strcat('-> ShootingCB_Luttinger =',num2str(toc),'sec'))
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Display Results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for k=1:length(E)
for i=1:length(E{k})
PSI{k}(:,i)=abs(psi{k}(:,i)).^2/max(abs(psi{k}(:,i)).^2)*ScF + E{k}(i); % normalisation for the plotting
end
end
if PrintResultsISB == 1
for k=1:length(E)
for i=1:length(E{k})
for j=1:length(E{k})
if j>i
z_dipole{k}(i,j) = abs( trapz( z , psi{k}(:,i).*z'.*psi{k}(:,j) ) );
f_dipole{k}(i,j) = 2*m0/hbar^2 * ( E{k}(j)-E{k}(i) )* e * z_dipole{k}(i,j)^2 ;
% Take care! Some people use meff inside the oscillator strenght f
% Actually, meff has sens in an infinite QW because there is a single mass value
% but not in multi-QW structure with various materials
% https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_IntrabandTransitions.htm
% https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_InGaAs_MQWs.htm
end
end
end
end
display('')
display('===================================================')
display('Intersubband Results:')
display('===================================================')
for k=1:length(E)
display('')
display(s{k+2}(34:end))
if k>1
%display('===================================================')
end
for i=1:length(E{k})
for j=1:length(E{k})
if j>i
if E{k}(i)>0
display(strcat(...
'e',num2str(i),'-e',num2str(j),' = ',num2str( E{k}(j)-E{k}(i),'%.3f' ),'eV; z'...
,num2str(i),'-',num2str(j),' = ',num2str( z_dipole{k}(i,j)*1e9,'%.3f' ),'nm; f'...
,num2str(i),'-',num2str(j),' = ',num2str( f_dipole{k}(i,j),'%.3f' ) ...
) )
else
display(strcat(...
'h',num2str(i),'-h',num2str(j),' = ',num2str( E{k}(j)-E{k}(i),'%.3f' ),'eV; z'...
,num2str(i),'-',num2str(j),' = ',num2str( z_dipole{k}(i,j)*1e9,'%.3f' ),'nm; f'...
,num2str(i),'-',num2str(j),' = ',num2str( f_dipole{k}(i,j),'%.3f' ) ...
) )
end
end
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figures %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%figure('position',[-3500 100 1000 700],'color','w');
figure('position',[10 100 1000 700],'color','w');
subplot(1,1,1,'fontsize',15)
hold on;grid on;box on;
xscale=[z(1) z(end)]*1e9;
if PlotVB == 0
yscale=[min(V0)-0.1 max(V0)+0.1];
else
yscale=[min(V0-Eg)-0.1 max(V0)+0.1];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
shift=0;%Eg(round(length(z)/2));
plot(z*1e9,V0 +shift, 'b-','linewidth',2)
plot(z*1e9,V0-Eg +shift, 'b-' ,'linewidth',2)
plot(z*1e9,V0-Eg-Dso+shift, 'b-','linewidth',2)
if StrainModel == 1
plot(z*1e9,V0 +DCBO +shift, 'b--','linewidth',2)
plot(z*1e9,V0-Eg+DVBOHH +shift, 'b--' ,'linewidth',2)
plot(z*1e9,V0-Eg+DVBOLH +shift, 'k--' ,'linewidth',2)
plot(z*1e9,V0-Eg-Dso+DVBOSO+shift, 'm--' ,'linewidth',2)
end
for j=1:length(E)
for i=1:length(E{j})
plot(z*1e9,PSI{j}(:,i)+shift,'color',col(j,:),'linewidth',1)
end
end
xlabel('z (nm)');
ylabel('Energy (eV)');
if StrainModel == 1
title(strcat('T=',num2str(T),'K ; with STRAIN'))
else
title(strcat('T=',num2str(T),'K ; without STRAIN'))
end
xlim(xscale)
ylim(yscale)
text(-2,(yscale(2)-yscale(1))*1.0+yscale(1),s,'background','w','edgecolor','k');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%