forked from aestream/aestream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.cpp
282 lines (225 loc) · 8.93 KB
/
convert.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include "convert.hpp"
#include "dvs_gesture.hpp"
#include <cstddef>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/extension.h>
#include <torch/script.h>
#include <torch/torch.h>
#include <type_traits>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
torch::Tensor
convert_polarity_events(std::vector<AEDAT::PolarityEvent> &polarity_events,
const std::vector<int64_t> &tensor_size)
{
const size_t size = polarity_events.size();
std::vector<int64_t> indices(3 * size);
std::vector<int8_t> values;
const auto max_duration =
tensor_size.empty()
? polarity_events.back().timestamp - polarity_events[0].timestamp
: tensor_size[0];
for (size_t idx = 0; idx < size; idx++)
{
auto event = polarity_events[idx];
auto event_time = event.timestamp - polarity_events[0].timestamp;
// Break if event is after max_duration
if (event_time >= max_duration)
{
break;
}
indices[idx] = event_time;
indices[size + idx] = event.x;
indices[2 * size + idx] = event.y;
values.push_back(event.polarity ? 1 : -1);
}
auto index_options = torch::TensorOptions().dtype(torch::kInt64);
torch::Tensor ind = torch::from_blob(
indices.data(), {3, static_cast<uint32_t>(size)}, index_options);
auto value_options = torch::TensorOptions().dtype(torch::kInt8);
torch::Tensor val = torch::from_blob(
values.data(), {static_cast<uint32_t>(size)}, value_options);
auto events =
tensor_size.empty()
? torch::sparse_coo_tensor(ind, val)
: torch::sparse_coo_tensor(ind, val, torch::IntArrayRef(tensor_size));
return events.clone();
}
std::vector<torch::Tensor>
convert_polarity(std::vector<AEDAT::PolarityEvent> &polarity_events,
const int64_t window_size,
const int64_t window_step,
const std::vector<double> &scale,
const std::vector<int64_t> &image_dimensions)
{
std::vector<torch::Tensor> event_tensors;
size_t start = 0;
size_t idx = 0;
size_t next_idx = 0;
bool next_idx_found = false;
auto last_event = polarity_events.back();
while (start < last_event.timestamp - window_size)
{
auto event = polarity_events[idx];
size_t start_time = event.timestamp;
std::vector<int64_t> indices;
std::vector<int8_t> values;
while (event.timestamp < start + window_size)
{
indices.push_back(static_cast<int64_t>((event.timestamp - start_time) / scale[0]));
indices.push_back(static_cast<int64_t>(event.x / scale[1]));
indices.push_back(static_cast<int64_t>(event.y / scale[2]));
values.push_back(event.polarity ? 1 : -1);
if (!next_idx_found && (event.timestamp >= start + window_step))
{
next_idx = idx;
next_idx_found = true;
}
idx += 1;
event = polarity_events[idx];
}
// create sparse tensor
auto index_options = torch::TensorOptions().dtype(torch::kInt64);
torch::Tensor ind = torch::from_blob(
indices.data(), {static_cast<uint32_t>(indices.size() / 3), 3}, index_options)
.permute({1, 0});
auto value_options = torch::TensorOptions().dtype(torch::kInt8);
torch::Tensor val = torch::from_blob(
values.data(), {static_cast<uint32_t>(indices.size() / 3)}, value_options);
auto events = torch::sparse_coo_tensor(ind, val, {window_size, image_dimensions[0], image_dimensions[1]});
event_tensors.push_back(events.clone());
idx = next_idx;
start += window_step;
next_idx_found = false;
}
return event_tensors;
}
long int get_total_seconds_of_events(std::vector<AEDAT::PolarityEvent> &events)
{
uint32_t start = events.front().timestamp;
uint32_t end = events.back().timestamp;
auto diff = std::chrono::duration<uint32_t, std::micro>(end - start);
auto diff_sec = std::chrono::duration_cast<std::chrono::seconds>(diff);
return diff_sec.count();
}
std::vector<AEDAT::PolarityEvent> get_events_at_second(std::vector<AEDAT::PolarityEvent> &events, int second)
{
int start_offset = 0;
auto sec = std::chrono::seconds(second);
auto micro_sec = std::chrono::duration_cast<std::chrono::microseconds>(sec);
while (events[start_offset].timestamp < micro_sec.count())
{
start_offset += 1;
}
std::vector<AEDAT::PolarityEvent> events_in_interval(events.begin(), events.begin() + start_offset);
return events_in_interval;
}
std::vector<std::vector<AEDAT::PolarityEvent>> split_events(std::vector<AEDAT::PolarityEvent> &events)
{
std::vector<std::vector<AEDAT::PolarityEvent>> split_events;
int start_offset = 0;
int end_offset = 0;
int cur_sec = 0;
auto total_seconds = get_total_seconds_of_events(events);
while (cur_sec <= total_seconds)
{
auto sec = std::chrono::seconds(cur_sec);
auto micro_sec = std::chrono::duration_cast<std::chrono::microseconds>(sec);
do
{
end_offset += 1;
} while (events[end_offset].timestamp < micro_sec.count());
auto temp_vec = std::vector<AEDAT::PolarityEvent>(events.begin() + start_offset, events.begin() + end_offset);
split_events.push_back(temp_vec);
start_offset = end_offset;
cur_sec += 1;
}
return split_events;
}
std::vector<torch::Tensor> get_frames_from_events(std::vector<AEDAT::PolarityEvent> &events)
{
std::vector<torch::Tensor> frames;
int start_offset = 0;
int end_offset = 0;
int cur_sec = 0;
auto total_seconds = get_total_seconds_of_events(events);
while (cur_sec <= total_seconds)
{
auto sec = std::chrono::seconds(cur_sec);
auto micro_sec = std::chrono::duration_cast<std::chrono::microseconds>(sec);
do
{
end_offset += 1;
} while (events[end_offset].timestamp < micro_sec.count());
auto temp_vec = std::vector<AEDAT::PolarityEvent>(events.begin() + start_offset, events.begin() + end_offset);
torch::Tensor tensors = convert_polarity_events(temp_vec);
//torch::Tensor aggr_tensor = torch::_sparse_sum(tensors, 0);
//frames.push_back(aggr_tensor);
start_offset = end_offset;
cur_sec += 1;
}
std::reverse(frames.begin(), frames.end());
return frames;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
py::class_<AEDAT::PolarityEvent>(m, "PolarityEvent")
.def("get_valid", &AEDAT::PolarityEvent::get_valid)
.def("get_x", &AEDAT::PolarityEvent::get_x)
.def("get_y", &AEDAT::PolarityEvent::get_y)
.def("get_polarity", &AEDAT::PolarityEvent::get_polarity)
.def("get_timestamp", &AEDAT::PolarityEvent::get_timestamp);
py::class_<dvs_gesture::DataSet::DataPoint>(m, "DVSGestureDataPoint")
.def_readonly("label", &dvs_gesture::DataSet::DataPoint::label)
.def_readonly("events", &dvs_gesture::DataSet::DataPoint::events);
py::class_<dvs_gesture::DataSet>(m, "DVSGestureData")
.def(py::init<>())
.def(py::init<const std::string &, const std::string &>())
.def("load", &dvs_gesture::DataSet::load)
.def_readonly("datapoints", &dvs_gesture::DataSet::datapoints);
py::class_<AEDAT4::Frame>(m, "AEDAT4Frame")
.def_readwrite("time", &AEDAT4::Frame::time)
.def_readwrite("width", &AEDAT4::Frame::width)
.def_readwrite("height", &AEDAT4::Frame::height)
.def_readwrite("pixels", &AEDAT4::Frame::pixels);
py::class_<AEDAT>(m, "AEDAT")
.def(py::init<>())
.def(py::init<const std::string &>())
.def("load", &AEDAT::load)
.def_readwrite("polarity_events", &AEDAT::polarity_events)
.def_readwrite("dynapse_events", &AEDAT::dynapse_events)
.def_readwrite("imu6_events", &AEDAT::imu6_events)
.def_readwrite("imu9_events", &AEDAT::imu9_events);
m.def("convert_polarity", &convert_polarity,
py::arg("polarity_events"),
py::arg("window_size"),
py::arg("window_step"),
py::arg("scale"),
py::arg("image_dimension"),
"Converts the AEDAT data into a dense Torch tensor.");
m.def("get_frames_from_events", &get_frames_from_events,
py::arg("polarity_events"),
"Converts events into frame");
m.def("get_total_seconds_of_events", &get_total_seconds_of_events,
py::arg("polarity_events"),
"Get seconds of event");
m.def("get_events_at_second", &get_events_at_second,
py::arg("polarity_events"),
py::arg("second"),
"Get all events in specific time intervall");
m.def("split_events", &split_events,
py::arg("polarity_events"),
"Splits events");
m.def("convert_polarity_events", &convert_polarity_events,
py::arg("polarity_events"),
py::arg("tensor_size") = std::vector<int64_t>(),
"Converts the AEDAT data into a sparse Torch tensor. If provided, the "
"tensor is loaded and shaped after the tensor_size argument");
py::class_<AEDAT4>(m, "AEDAT4")
.def(py::init<>())
.def(py::init<const std::string &>())
.def("load", &AEDAT4::load)
.def_readwrite("polarity_events", &AEDAT4::polarity_events)
.def_readwrite("frames", &AEDAT4::frames);
}