forked from MengHao666/Minimal-Hand-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_shape_net.py
357 lines (321 loc) · 9.99 KB
/
train_shape_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import argparse
import os
import time
import torch
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
from progress.bar import Bar
from tensorboardX.writer import SummaryWriter
from termcolor import cprint
from model import shape_net
from datasets import SIK1M
from losses import shape_loss
# select proper device to run
from utils import misc
from utils.eval.evalutils import AverageMeter
import numpy as np
writer = SummaryWriter('log')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True
steps = 0
def print_args(args):
opts = vars(args)
cprint("{:>30} Options {}".format("=" * 15, "=" * 15), 'yellow')
for k, v in sorted(opts.items()):
print("{:>30} : {}".format(k, v))
cprint("{:>30} Options {}".format("=" * 15, "=" * 15), 'yellow')
def main(args):
if not os.path.isdir(args.checkpoint):
os.makedirs(args.checkpoint)
print_args(args)
print("\nCREATE NETWORK")
model = shape_net.ShapeNet(_mano_root='mano/models')
model = model.to(device)
criterion = shape_loss.SIKLoss(
lambda_joint=0.0,
lambda_shape=1.0
)
optimizer = torch.optim.Adam(
[
{
'params': model.shapereg_layers.parameters(),
'initial_lr': args.learning_rate
},
],
lr=args.learning_rate,
)
train_dataset = SIK1M.SIK1M(
data_root=args.data_root,
data_split="train"
)
val_dataset = SIK1M.SIK1M(
data_root=args.data_root,
data_split="test"
)
print("Total train dataset size: {}".format(len(train_dataset)))
print("Total val dataset size: {}".format(len(val_dataset)))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch,
shuffle=True,
num_workers=args.workers,
pin_memory=True
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.test_batch,
shuffle=False,
num_workers=args.workers,
pin_memory=True
)
if args.evaluate or args.resume:
shape_net.load_checkpoint(
model, os.path.join(args.checkpoint, 'ckp_siknet_synth.pth.tar')
)
if args.evaluate:
for params in model.invk_layers.parameters():
params.requires_grad = False
if args.evaluate:
validate(val_loader, model, args=args)
cprint('Eval All Done', 'yellow', attrs=['bold'])
return 0
model = torch.nn.DataParallel(model)
print("\nUSING {} GPUs".format(torch.cuda.device_count()))
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, args.lr_decay_step, gamma=args.gamma,
last_epoch=args.start_epoch
)
train_bone_len = []
train_shape_l2 = []
test_bone_len = []
test_shape_l2 = []
for epoch in range(args.start_epoch, args.epochs + 1):
print('\nEpoch: %d' % (epoch + 1))
for i in range(len(optimizer.param_groups)):
print('group %d lr:' % i, optimizer.param_groups[i]['lr'])
############# trian for on epoch ###############
t1, t2 = train(
train_loader,
model,
criterion,
optimizer,
args=args,
)
##################################################
shape_net.save_checkpoint(
{
'epoch': epoch + 1,
'state_dict': model.module.state_dict(),
},
checkpoint=args.checkpoint,
filename='{}.pth.tar'.format(args.saved_prefix),
snapshot=args.snapshot,
is_best=False
)
t3, t4 = validate(val_loader, model, criterion, args)
train_bone_len.append(t1)
train_shape_l2.append(t2)
test_bone_len.append(t3)
test_shape_l2.append(t4)
np.save('log/train_bone_len.npy', train_bone_len)
np.save('log/test_bone_len.npy', test_bone_len)
np.save('log/train_shape_l2.npy', train_shape_l2)
np.save('log/test_shape_l2.npy', test_shape_l2)
scheduler.step()
cprint('All Done', 'yellow', attrs=['bold'])
return 0 # end of main
def validate(val_loader, model, criterion, args):
am_shape_l2 = AverageMeter()
am_bone_len = AverageMeter()
model.eval()
bar = Bar('\033[33m Eval \033[0m', max=len(val_loader))
with torch.no_grad():
for i, metas in enumerate(val_loader):
results, targets, total_loss, losses = one_forward_pass(
metas, model, criterion, args, train=True
)
am_shape_l2.update(losses['shape_reg'].item(), targets['batch_size'])
am_bone_len.update(losses['bone_len'].item(), targets['batch_size'])
bar.suffix = (
'({batch}/{size}) '
't: {total:}s | '
'eta:{eta:}s | '
'lN: {lossLen:.5f} | '
'lL2: {lossL2:.5f} | '
).format(
batch=i + 1,
size=len(val_loader),
total=bar.elapsed_td,
eta=bar.eta_td,
lossLen=am_bone_len.avg,
lossL2=am_shape_l2.avg,
)
bar.next()
bar.finish()
return (am_bone_len.avg, am_shape_l2.avg)
def train(train_loader, model, criterion, optimizer, args):
batch_time = AverageMeter()
data_time = AverageMeter()
am_shape_l2 = AverageMeter()
am_bone_len = AverageMeter()
last = time.time()
# switch to trian
model.train()
bar = Bar('\033[31m Train \033[0m', max=len(train_loader))
for i, metas in enumerate(train_loader):
data_time.update(time.time() - last)
results, targets, total_loss, losses = one_forward_pass(
metas, model, criterion, args, train=True
)
global steps
steps += 1
writer.add_scalar('loss', total_loss.item(), steps)
am_shape_l2.update(losses['shape_reg'].item(), targets['batch_size'])
am_bone_len.update(losses['bone_len'].item(), targets['batch_size'])
''' backward and step '''
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
''' progress '''
batch_time.update(time.time() - last)
last = time.time()
bar.suffix = (
'({batch}/{size}) '
'd: {data:.2f}s | '
'b: {bt:.2f}s | '
't: {total:}s | '
'eta:{eta:}s | '
'lN: {lossLen:.5f} | '
'lL2: {lossL2:.5f} | '
).format(
batch=i + 1,
size=len(train_loader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
lossLen=am_bone_len.avg,
lossL2=am_shape_l2.avg,
)
bar.next()
bar.finish()
return (am_bone_len.avg, am_shape_l2.avg)
def one_forward_pass(metas, model, criterion, args, train=True):
''' prepare targets '''
rel_bone_len = metas['rel_bone_len'].float().to(device, non_blocking=True)
targets = {
'batch_size': rel_bone_len.shape[0],
'rel_bone_len': rel_bone_len
}
''' ---------------- Forward Pass ---------------- '''
results = model(rel_bone_len)
''' ---------------- Forward End ---------------- '''
total_loss = torch.Tensor([0]).cuda()
losses = {}
if not train:
return results, targets, total_loss, losses
''' conpute losses '''
total_loss, losses = criterion.compute_loss(results, targets)
return results, targets, total_loss, losses
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='PyTorch Train dl shape')
# Miscs
parser.add_argument(
'-ckp',
'--checkpoint',
default='checkpoints',
type=str,
metavar='PATH',
help='path to save checkpoint (default: checkpoint)'
)
parser.add_argument(
'-dr',
'--data_root',
type=str,
default='data',
help='dataset root directory'
)
parser.add_argument(
'-sp',
'--saved_prefix',
default='ckp_siknet_synth',
type=str,
metavar='PATH',
help='path to save checkpoint (default: checkpoint)'
)
parser.add_argument(
'--snapshot',
default=1, type=int,
help='save models for every #snapshot epochs (default: 1)'
)
parser.add_argument(
'-e', '--evaluate',
dest='evaluate',
action='store_true',
help='evaluate model on validation set'
)
parser.add_argument(
'-r', '--resume',
dest='resume',
action='store_true',
help='resume model on validation set'
)
# Training Parameters
parser.add_argument(
'-j', '--workers',
default=8,
type=int,
metavar='N',
help='number of data loading workers (default: 8)'
)
parser.add_argument(
'--epochs',
default=150,
type=int,
metavar='N',
help='number of total epochs to run'
)
parser.add_argument(
'-se', '--start_epoch',
default=0,
type=int,
metavar='N',
help='manual epoch number (useful on restarts)'
)
parser.add_argument(
'-b', '--train_batch',
default=1024,
type=int,
metavar='N',
help='train batchsize'
)
parser.add_argument(
'-tb', '--test_batch',
default=512,
type=int,
metavar='N',
help='test batchsize'
)
parser.add_argument(
'-lr', '--learning-rate',
default=1.0e-4,
type=float,
metavar='LR',
help='initial learning rate'
)
parser.add_argument(
"--lr_decay_step",
default=40,
type=int,
help="Epochs after which to decay learning rate",
)
parser.add_argument(
'--gamma',
type=float,
default=0.1,
help='LR is multiplied by gamma on schedule.'
)
main(parser.parse_args())