-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy path76_blackwell_conv_fprop.cu
534 lines (435 loc) · 21.9 KB
/
76_blackwell_conv_fprop.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/***************************************************************************************************
* Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Simple fprop convolution example targeting NVIDIA Blackwell SM100 Tensor Core MMA using CUTLASS 3.x APIs.
This example demonstrate a simple way to instantiate and run a fprop convolution kernel using the new CUTLASS 3.0
APIs on NVIDIA Blackwell SM100 architecture.
The basic computation logic of fprop convolution kernel is, take 3D convolution as an example:
Activation (NDHWC) * Weight/Filter (KTRSC) = Xformed Actication (NZPQK)
where in terms of GEMM perspective,
Matrix A = Activation, Matrix B = Weight/Filter, Matrix C = Xformed Activation
This example instantiates a simple fprop kernel using TMA + UMMA + Warp Specialized design with input and output types are fp16.
Alpha/beta scaling is supported while fusions like relu/bias/per-channel scaling are not supported in this example.
Usage:
$ ./examples/76_blackwell_conv/76_blackwell_conv_fprop --n=4 --d=1 --h=8 --w=8 --c=64 --k=64 --t=1 --r=3 --s=3 --pad_d=0
--pad_h=1 --pad_w=1 --stride_d=1 --stride_h=1 --stride_w=1 --dilation_d=1 --dilation_h=1 --dilation_w=1
*/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cutlass/kernel_hardware_info.hpp"
#include "cutlass/conv/convolution.h"
#include "cutlass/conv/convnd_problem_shape.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/conv/dispatch_policy.hpp"
#include "cutlass/conv/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/conv/device/conv_universal_adapter.hpp"
#include "cutlass/conv/kernel/conv_universal.hpp"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/convolution.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/device/tensor_fill.h"
#include "helper.h"
using namespace cute;
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Conv kernel configurations
/////////////////////////////////////////////////////////////////////////////////////////////////
// Activation matrix configuration
using ElementAct = half_t; // Element type for activation matrix
constexpr int AlignmentAct = 128 / cutlass::sizeof_bits<ElementAct>::value; // Memory access granularity/alignment of activation matrix in units of elements (up to 16 bytes)
// Weight/Filter matrix configuration
using ElementFlt = half_t; // Element type for weight/filter matrix operand
constexpr int AlignmentFlt = 128 / cutlass::sizeof_bits<ElementFlt>::value; // Memory access granularity/alignment of weight/filter matrix in units of elements (up to 16 bytes)
// Xformed activation matrix configuration
using ElementXformedAct = half_t; // Element type for xformed activation matrix operand
constexpr int AlignmentXformedAct = 128 / cutlass::sizeof_bits<ElementXformedAct>::value; // Memory access granularity/alignment of xformed activation matrix in units of elements (up to 16 bytes)
// Layout of matrix A/B/C in gemm's perspecitive.
using LayoutA = cutlass::layout::TensorNDHWC;
using LayoutB = cutlass::layout::TensorNDHWC;
using LayoutC = cutlass::layout::TensorNDHWC;
// Kernel functional config
using ElementAccumulator = float; // Element type for internal accumulation
using ElementCompute = float; // Element type for internal computation
using ArchTag = cutlass::arch::Sm100; // Tag indicating the minimum SM that supports the intended feature
using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag
constexpr cutlass::conv::Operator ConvOp = cutlass::conv::Operator::kFprop; // Convolution operation
// Kernel Perf config
using TileShape = Shape<_128,_128,Shape<_64>>; // Threadblock-level tile size
using ClusterShape = Shape<_1,_1,_1>; // Shape of the threadblocks in a cluster
// Build the epilogue
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag, OperatorClass,
TileShape, ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementCompute,
ElementXformedAct, LayoutC, AlignmentXformedAct,
ElementXformedAct, LayoutC, AlignmentXformedAct,
cutlass::epilogue::collective::EpilogueScheduleAuto
>::CollectiveOp;
// Build the mainloop
using CollectiveMainloop = typename cutlass::conv::collective::CollectiveBuilder<
ArchTag, OperatorClass, ConvOp,
ElementAct, LayoutA, AlignmentAct,
ElementFlt, LayoutB, AlignmentFlt,
ElementAccumulator,
TileShape, ClusterShape,
cutlass::conv::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
cutlass::conv::collective::KernelScheduleAuto
>::CollectiveOp;
// Compose into a kernel
using ProblemShape=cutlass::conv::ConvProblemShape<ConvOp, CollectiveMainloop::DispatchPolicy::NumSpatialDimensions>;
using ConvKernel = cutlass::conv::kernel::ConvUniversal<
ProblemShape,
CollectiveMainloop,
CollectiveEpilogue
>;
using Conv = cutlass::conv::device::ConvUniversalAdapter<ConvKernel>;
using StrideC = typename Conv::ConvKernel::StrideC;
using StrideD = typename Conv::ConvKernel::StrideD;
//
// Data members
//
/// Initialization
StrideC stride_C;
StrideD stride_D;
uint64_t seed;
cutlass::DeviceAllocation<ElementAct> block_A;
cutlass::DeviceAllocation<ElementFlt> block_B;
cutlass::DeviceAllocation<ElementXformedAct> block_C;
cutlass::DeviceAllocation<ElementXformedAct> block_D;
cutlass::DeviceAllocation<ElementXformedAct> block_ref_D;
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Testbed utility types
/////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
struct Options {
bool help;
float alpha, beta;
int iterations;
int n, d, h, w, c, k, t, r, s, z, p, q;
int pad_d, pad_h, pad_w;
int stride_d, stride_h, stride_w;
int dilation_d, dilation_h, dilation_w;
Options():
help(false),
n(4), d(1), h(8), w(8), c(64), k(64), t(1), r(3), s(3),
pad_d(0), pad_h(1), pad_w(1),
stride_d(1), stride_h(1), stride_w(1),
dilation_d(1), dilation_h(1), dilation_w(1),
alpha(1.f), beta(0.f),
iterations(10)
{ }
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
cmd.get_cmd_line_argument("n", n);
cmd.get_cmd_line_argument("d", d);
cmd.get_cmd_line_argument("h", h);
cmd.get_cmd_line_argument("w", w);
cmd.get_cmd_line_argument("c", c);
cmd.get_cmd_line_argument("k", k);
cmd.get_cmd_line_argument("t", t);
cmd.get_cmd_line_argument("r", r);
cmd.get_cmd_line_argument("s", s);
cmd.get_cmd_line_argument("pad_d", pad_d);
cmd.get_cmd_line_argument("pad_h", pad_h);
cmd.get_cmd_line_argument("pad_w", pad_w);
cmd.get_cmd_line_argument("stride_d", stride_d);
cmd.get_cmd_line_argument("stride_h", stride_h);
cmd.get_cmd_line_argument("stride_w", stride_w);
cmd.get_cmd_line_argument("dilation_d", dilation_d);
cmd.get_cmd_line_argument("dilation_h", dilation_h);
cmd.get_cmd_line_argument("dilation_w", dilation_w);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
cmd.get_cmd_line_argument("iterations", iterations);
// Calculate z,p,q based on inputs.
z = 1 + (d + 2 * pad_d - ((t - 1) * dilation_d + 1)) / stride_d;
p = 1 + (h + 2 * pad_h - ((r - 1) * dilation_h + 1)) / stride_h;
q = 1 + (w + 2 * pad_w - ((s - 1) * dilation_w + 1)) / stride_w;
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "76_blackwell_conv_fprop\n\n"
<< " Blackwell FP16 fprop convolution using a Warp Specialized kernel.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --n=<int> Sets the batch size of the Activation\n"
<< " --d=<int> Sets the depth size of the Activation\n"
<< " --h=<int> Sets the height of the Activation\n"
<< " --w=<int> Sets the width of the Activation\n"
<< " --c=<int> Sets the channel size of the Activation\n"
<< " --k=<int> Sets the image numbers of the Filter\n"
<< " --t=<int> Sets the depth size of the Filter\n"
<< " --r=<int> Sets the height of the Filter\n"
<< " --s=<int> Sets the width of the Filter\n"
<< " --pad_d=<int> Sets the padding size in depth\n"
<< " --pad_h=<int> Sets the padding size in height\n"
<< " --pad_w=<int> Sets the padding size in width\n"
<< " --stride_d=<int> Sets the traversal stride size in depth\n"
<< " --stride_h=<int> Sets the traversal stride size in height\n"
<< " --stride_w=<int> Sets the traversal stride size in width\n"
<< " --dialtion_d=<int> Sets the filter dilation size in depth\n"
<< " --dialtion_h=<int> Sets the filter dilation size in height\n"
<< " --dialtion_w=<int> Sets the filter dilation size in width\n"
<< " --alpha=<f32> Epilogue scalar alpha\n"
<< " --beta=<f32> Epilogue scalar beta\n\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n\n";
out
<< "\n\nExamples:\n\n"
<< "$ " << "76_blackwell_conv_fprop" << " --n=4 --d=1 --h=8 --w=8 --c=64 --k=64 --t=1 --r=3 --s=3 --pad_d=0"
<< " --pad_h=1 --pad_w=1 --stride_d=1 --stride_h=1 --stride_w=1 --dilation_d=1 --dilation_h=1 --dilation_w=1 \n\n";
return out;
}
/// Compute performance in GFLOP/s
double gflops(double runtime_s) const
{
// Two flops per multiply-add
uint64_t flop = uint64_t(2) * (n * z * p * q) * k * (t * r * s * c);
double gflop = double(flop) / double(1.0e9);
return gflop / runtime_s;
}
};
/// Result structure
struct Result
{
double avg_runtime_ms;
double gflops;
cutlass::Status status;
cudaError_t error;
bool passed;
Result(
double avg_runtime_ms = 0,
double gflops = 0,
cutlass::Status status = cutlass::Status::kSuccess,
cudaError_t error = cudaSuccess)
:
avg_runtime_ms(avg_runtime_ms), gflops(gflops), status(status), error(error), passed(false)
{}
};
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Conv setup and evaluation
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper to initialize a block of device data
template <class Element>
bool initialize_block(
cutlass::DeviceAllocation<Element>& block,
uint64_t seed=2023) {
Element scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
if (bits_input == 1) {
scope_max = Element(2);
scope_min = Element(0);
} else if (bits_input <= 8) {
scope_max = Element(2);
scope_min = Element(-2);
} else {
scope_max = Element(8);
scope_min = Element(-8);
}
cutlass::reference::device::BlockFillRandomUniform(
block.get(), block.size(), seed, scope_max, scope_min, 0);
return true;
}
/// Initialize operands to be used in the Conv and reference Conv
void initialize(const Options &options) {
// Construct ConvProblemShape
ProblemShape problem_shape(
cutlass::conv::Mode::kCrossCorrelation,
{options.n, options.d, options.h, options.w, options.c}, // ndhwc
{options.k, options.t, options.r, options.s, options.c}, // ktrsc
{options.pad_d, options.pad_h, options.pad_w}, // padding lower (pad_d, pad_h, pad_w)
{options.pad_d, options.pad_h, options.pad_w}, // padding upper (pad_d, pad_h, pad_w)
{options.stride_d, options.stride_h, options.stride_w}, // stride (stride_d, stride_h, stride_w)
{options.dilation_d, options.dilation_h, options.dilation_w}, // dilation (dilation_d, dilation_h, dilation_w)
1 // group
);
// Setup stride_C/D
cute::for_each(cute::make_seq<cute::rank<0>(StrideC{})>{}, [&](auto i) {
cute::get<0, i>(stride_C) = problem_shape.stride_C[ProblemShape::RankT-2-i];
});
cute::for_each(cute::make_seq<cute::rank<0>(StrideD{})>{}, [&](auto i) {
cute::get<0, i>(stride_D) = problem_shape.stride_C[ProblemShape::RankT-2-i];
});
block_A.reset(problem_shape.size_A());
block_B.reset(problem_shape.size_B());
block_C.reset(problem_shape.size_C());
block_D.reset(problem_shape.size_C());
block_ref_D.reset(problem_shape.size_C());
initialize_block(block_A, seed + 2023);
initialize_block(block_B, seed + 2022);
initialize_block(block_C, seed + 2021);
}
/// Populates a Gemm::Arguments structure from the given commandline options
typename Conv::Arguments args_from_options(const Options &options)
{
// Construct ConvProblemShape
ProblemShape problem_shape(
cutlass::conv::Mode::kCrossCorrelation,
{options.n, options.d, options.h, options.w, options.c}, // ndhwc
{options.k, options.t, options.r, options.s, options.c}, // ktrsc
{options.pad_d, options.pad_h, options.pad_w}, // padding lower (pad_d, pad_h, pad_w)
{options.pad_d, options.pad_h, options.pad_w}, // padding upper (pad_d, pad_h, pad_w)
{options.stride_d, options.stride_h, options.stride_w}, // stride (stride_d, stride_h, stride_w)
{options.dilation_d, options.dilation_h, options.dilation_w}, // dilation (dilation_d, dilation_h, dilation_w)
1 // group
);
typename Conv::Arguments arguments{
problem_shape,
{block_A.get(), block_B.get()},
{{options.alpha, options.beta}, block_C.get(), stride_C, block_D.get(), stride_D}
};
return arguments;
}
bool verify(const Options &options) {
cutlass::TensorRef ref_A(block_A.get(), LayoutA::packed({options.n, options.d, options.h, options.w, options.c}));
cutlass::TensorRef ref_B(block_B.get(), LayoutB::packed({options.k, options.t, options.r, options.s, options.c}));
cutlass::TensorRef ref_C(block_C.get(), LayoutC::packed({options.n, options.z, options.p, options.q, options.k}));
cutlass::TensorRef ref_D(block_ref_D.get(), LayoutC::packed({options.n, options.z, options.p, options.q, options.k}));
//
// Compute reference output
//
// Construct Conv3dProblemSize with user defined inputs.
cutlass::conv::Conv3dProblemSize problem_size(
cutlass::Tensor5DCoord(options.n, options.d, options.h, options.w, options.c), // ndhwc
cutlass::Tensor5DCoord(options.k, options.t, options.r, options.s, options.c), // ktrsc
cutlass::make_Coord(options.pad_d, options.pad_h, options.pad_w), // padding
cutlass::make_Coord(options.stride_d, options.stride_h, options.stride_w), // stride (stride_d, stride_h, stride_w)
cutlass::make_Coord(options.dilation_d, options.dilation_h, options.dilation_w), // dilation (dilation_d, dilation_h, dilation_w)
cutlass::Tensor5DCoord(options.n, options.z, options.p, options.q, options.k) // nzpqk
);
// Launch device reference conv kernel
cutlass::reference::device::Conv3dFprop(problem_size, ref_A, ref_B, ref_C, ref_D, options.alpha, options.beta);
// Wait for kernel to finish
CUDA_CHECK(cudaDeviceSynchronize());
// Check if output from CUTLASS kernel and reference kernel are equal or not
bool passed = cutlass::reference::device::BlockCompareEqual(block_ref_D.get(), block_D.get(), block_D.size());
return passed;
}
/// Execute a given example GEMM computation
template <typename Gemm>
int run(Options &options)
{
initialize(options);
// Instantiate CUTLASS kernel depending on templates
Conv conv;
// Create a structure of conv kernel arguments suitable for invoking an instance of Conv
auto arguments = args_from_options(options);
// Using the arguments, query for extra workspace required for matrix multiplication computation
size_t workspace_size = Conv::get_workspace_size(arguments);
// Allocate workspace memory
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
// Check if the problem size is supported or not
CUTLASS_CHECK(conv.can_implement(arguments));
// Initialize CUTLASS kernel with arguments and workspace pointer
CUTLASS_CHECK(conv.initialize(arguments, workspace.get()));
// Correctness / Warmup iteration
CUTLASS_CHECK(conv.run());
// Check if output from CUTLASS kernel and reference kernel are equal or not
Result result;
result.passed = verify(options);
std::cout << " Disposition: " << (result.passed ? "Passed" : "Failed") << std::endl;
if (!result.passed) {
exit(-1);
}
// Run profiling loop
if (options.iterations > 0)
{
GpuTimer timer;
timer.start();
for (int iter = 0; iter < options.iterations; ++iter) {
CUTLASS_CHECK(conv.initialize(arguments, workspace.get()));
CUTLASS_CHECK(conv.run());
}
timer.stop();
// Compute average runtime and GFLOPs.
float elapsed_ms = timer.elapsed_millis();
result.avg_runtime_ms = double(elapsed_ms) / double(options.iterations);
result.gflops = options.gflops(result.avg_runtime_ms / 1000.0);
std::cout << " Problem Size:" << std::endl;
std::cout << " Activation(n,d,h,w,c) = (" << options.n << ',' << options.d << ',' << options.h << ',' << options.w << ',' << options.c << "), ";
std::cout << " Filter(k,t,r,s,c) = (" << options.k << ',' << options.t << ',' << options.r << ',' << options.s << ',' << options.c << "), ";
std::cout << " Xformed Activation(n,z,p,q,k) = (" << options.n << ',' << options.z << ',' << options.p << ',' << options.q << ',' << options.k << ")" << std::endl;
std::cout << " Avg runtime: " << result.avg_runtime_ms << " ms" << std::endl;
std::cout << " GFLOPS: " << result.gflops << std::endl;
}
return 0;
}
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
///////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const **args) {
// CUTLASS must be compiled with CUDA 12.0 Toolkit to run this example
// and must have compute capability at least 90.
if (__CUDACC_VER_MAJOR__ < 12 || (__CUDACC_VER_MAJOR__ == 12 && __CUDACC_VER_MINOR__ < 8)) {
std::cerr << "This example requires CUDA 12.8 or newer." << std::endl;
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
cudaDeviceProp props;
int current_device_id;
CUDA_CHECK(cudaGetDevice(¤t_device_id));
CUDA_CHECK(cudaGetDeviceProperties(&props, current_device_id));
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (props.major != 10 && (props.minor != 0 || props.minor != 1)) {
std::cerr << "This example requires a GPU of NVIDIA's Blackwell architecture (compute capability 100 or 101)." << std::endl;
return 0;
}
//
// Parse options
//
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
//
// Evaluate CUTLASS kernels
//
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
run<Conv>(options);
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
return 0;
}
/////////////////////////////////////////////////////////////////////////////////////////////////