-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreal.py
170 lines (139 loc) · 5.71 KB
/
real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import math
import os
import time
import argparse
import csv
import json
from os.path import join
import torch
import numpy as np
import torch.nn.functional as F
from utils.linear_classifier import LinearClassifier
from utils import yaml_config_hook
def mixup(args, loader, classifier, criterion, optimizer):
for step1, (x1, y1) in enumerate(loader):
x1 = x1.to(args.device)
y1 = y1.to(args.device)
for step2, (x2, y2) in enumerate(loader):
x2 = x2.to(args.device)
y2 = y2.to(args.device)
if y1.argmax(1) != y2.argmax(1):
lam = np.random.beta(0.3, 0.3)
x = lam * x1 + (1 - lam) * x2
y = lam * y1 + (1 - lam) * y2
optimizer.zero_grad()
output = classifier(x)
loss = criterion(output, y)
loss.backward()
optimizer.step()
def train(args, loader, classifier, criterion, optimizer):
loss_epoch = 0
accuracy_epoch = 0
for step, (x, y) in enumerate(loader):
optimizer.zero_grad()
x = x.to(args.device)
y = y.to(args.device)
output = classifier(x)
loss = criterion(output, y)
acc = (output.argmax(1) == y.argmax(1)).sum().item() / y.size(0)
accuracy_epoch += acc
loss.backward()
optimizer.step()
loss_epoch += loss.item()
return loss_epoch/len(loader), accuracy_epoch/len(loader)
def move_img(args, dm):
img_list = []
with open(args.query_csv,'r') as f:
reader = csv.reader(f)
img_list = [row[0] for row in reader]
img_list = img_list[1:] # remove header of csv
fn_list = [path[path.rfind('\\') + 1:] for path in img_list]
print(img_list[0])
print(fn_list[0])
out_path = f"{args.out_path}-{time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())}"
os.makedirs(out_path)
for i in range(args.way):
subfolder = join(out_path, f"{i}")
os.makedirs(subfolder)
for i in range(len(img_list)):
path = img_list[i]
dst = join(join(out_path, f"{dm[i]}"), fn_list[i])
with open(path, 'rb') as f:
with open(dst, 'wb') as d:
d.write(f.read())
def pred(args, loader, classifier):
classifier.eval()
dict_img = {}
for step, (x, y) in enumerate(loader):
classifier.zero_grad()
x = x.to(args.device)
output = classifier(x)
label = output.argmax(1)
dict_img[step] = label.item()
return dict_img
def sample_from_loader(X, args):
X_list = []
y_list = []
for way_ins in range(args.way):
tmp_label = [0.0] * args.way
tmp_label[way_ins] = 1.0
for shot_ins in range(args.shot):
X_list.append(X[way_ins * args.shot + shot_ins])
y_list.append(tmp_label)
dataset = torch.utils.data.TensorDataset(torch.from_numpy(np.array(X_list)), torch.from_numpy(np.array(y_list)))
arr_loader = torch.utils.data.DataLoader(dataset, batch_size=args.logistic_batch_size, shuffle=True,)
return arr_loader
def sample_from_loaderQ(X, args):
X_list = []
y_list = []
for i in range(len(X)):
X_list.append(X[i])
y_list.append([0.0] * args.way)
dataset = torch.utils.data.TensorDataset(torch.from_numpy(np.array(X_list)), torch.from_numpy(np.array(y_list)))
arr_loader = torch.utils.data.DataLoader(dataset, batch_size=args.logistic_batch_size, shuffle=False,)
return arr_loader
def get_mean_support_feature(args, arr_support_loader):
mean_support_feature = torch.zeros(args.way, args.n_features)
for step, (x, y) in enumerate(arr_support_loader):
mean_support_feature[y.argmax()] += x[0]
mean_support_feature = F.normalize(mean_support_feature / args.shot)
return mean_support_feature
if __name__ == "__main__" :
# ------------------------------------------------------------------------
# init
# ------------------------------------------------------------------------
parser = argparse.ArgumentParser(description="Real")
config = yaml_config_hook(".\\config\\real.yaml")
for k, v in config.items():
parser.add_argument(f"--{k}", default=v, type=type(v))
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------------------------------------------------------
# Setting
# ------------------------------------------------------------------------
model_list = [
# arch encoder
# ["mocov3", "vit_base"],
["mocov3", "vit_small",],
# #["mocov3", "resnet50"],
]
for model_ins in model_list:
args.arch = model_ins[0]
args.encoder = model_ins[1]
SX = np.load(args.support_npy)
QX = np.load(args.query_npy)
args.n_features = SX.shape[1]
arr_support_loader = sample_from_loader(SX, args)
arr_query_loader = sample_from_loaderQ(QX, args)
classifier = LinearClassifier(args.n_features, args.way, weight=get_mean_support_feature(args, arr_support_loader))
classifier = classifier.to(args.device)
optimizer = torch.optim.Adam(classifier.parameters(), lr=3e-4)
criterion = torch.nn.CrossEntropyLoss()
for epoch in range(args.logistic_epochs):
loss_epoch, accuracy_epoch = train(args, arr_support_loader, classifier, criterion, optimizer)
if epoch % 10 == 0:
print(f"[{epoch}/{args.logistic_epochs}] loss={loss_epoch} acc={accuracy_epoch}")
if args.mixup_enabled:
mixup(args, arr_support_loader, classifier, criterion, optimizer)
dict_img = pred(args, arr_query_loader, classifier)
move_img(args, dict_img)