diff --git a/imageai/Detection/Custom/__init__.py b/imageai/Detection/Custom/__init__.py index e20e188e..ce9253c9 100644 --- a/imageai/Detection/Custom/__init__.py +++ b/imageai/Detection/Custom/__init__.py @@ -667,7 +667,8 @@ def loadModel(self): def detectObjectsFromImage(self, input_image="", output_image_path="", input_type="file", output_type="file", extract_detected_objects=False, minimum_percentage_probability=50, nms_treshold=0.4, - display_percentage_probability=True, display_object_name=True, thread_safe=False): + display_percentage_probability=True, display_object_name=True, display_box=True, + thread_safe=False): """ @@ -681,6 +682,7 @@ def detectObjectsFromImage(self, input_image="", output_image_path="", input_typ * nms_threshold (optional, o.45 by default) , option to set the Non-maximum suppression for the detection * display_percentage_probability (optional, True by default), option to show or hide the percentage probability of each object in the saved/returned detected image * display_display_object_name (optional, True by default), option to show or hide the name of each object in the saved/returned detected image + * display_box (optional, True by default), option to show or hide the bounding boxes of each object in the saved/returned detected image * thread_safe (optional, False by default), enforce the loaded detection model works across all threads if set to true, made possible by forcing all Keras inference to run on the default graph @@ -733,6 +735,7 @@ def detectObjectsFromImage(self, input_image="", output_image_path="", input_typ :param nms_treshold: :param display_percentage_probability: :param display_object_name: + :param display_box: :param thread_safe: :return image_frame: :return output_objects_array: @@ -824,7 +827,8 @@ def detectObjectsFromImage(self, input_image="", output_image_path="", input_typ drawn_image = self.__detection_utils.draw_boxes_and_caption(image_frame.copy(), all_boxes, all_labels, all_scores, show_names=display_object_name, - show_percentage=display_percentage_probability) + show_percentage=display_percentage_probability, + show_boxes=display_box) if extract_detected_objects: @@ -1369,7 +1373,7 @@ def label_color(self, label): else: return 0, 255, 0 - def draw_boxes_and_caption(self, image_frame, v_boxes, v_labels, v_scores, show_names=False, show_percentage=False): + def draw_boxes_and_caption(self, image_frame, v_boxes, v_labels, v_scores, show_names=False, show_percentage=False, show_boxes=False): for i in range(len(v_boxes)): box = v_boxes[i] @@ -1377,7 +1381,8 @@ def draw_boxes_and_caption(self, image_frame, v_boxes, v_labels, v_scores, show_ width, height = x2 - x1, y2 - y1 class_color = self.label_color(self.__labels.index(v_labels[i])) - image_frame = cv2.rectangle(image_frame, (x1, y1), (x2, y2), class_color, 2) + if show_boxes: + image_frame = cv2.rectangle(image_frame, (x1, y1), (x2, y2), class_color, 2) label = "" if show_names and show_percentage: diff --git a/imageai/Detection/__init__.py b/imageai/Detection/__init__.py index f1fdf4c8..d259ed6e 100644 --- a/imageai/Detection/__init__.py +++ b/imageai/Detection/__init__.py @@ -210,7 +210,8 @@ def detectObjectsFromImage(self, input_image="", output_image_path="", input_typ * extract_detected_objects (optional) , option to save each object detected individually as an image and return an array of the objects' image path. * minimum_percentage_probability (optional, 50 by default) , option to set the minimum percentage probability for nominating a detected object for output. * display_percentage_probability (optional, True by default), option to show or hide the percentage probability of each object in the saved/returned detected image - * display_display_object_name (optional, True by default), option to show or hide the name of each object in the saved/returned detected image + * display_object_name (optional, True by default), option to show or hide the name of each object in the saved/returned detected image + * display_box (optional, True by default), option to show or hide the bounding boxes of each object in the saved/returned detected image * thread_safe (optional, False by default), enforce the loaded detection model works across all threads if set to true, made possible by forcing all Tensorflow inference to run on the default graph.