diff --git a/python/paddle/nn/layer/container.py b/python/paddle/nn/layer/container.py index 750e65e349d743..8fa65aa8f340eb 100644 --- a/python/paddle/nn/layer/container.py +++ b/python/paddle/nn/layer/container.py @@ -303,7 +303,7 @@ class ParameterList(Layer): This container acts like a Python list, but parameters it contains will be properly added. Parameters: - parameters (iterable, optional): Iterable Parameters to be added + parameters (iterable, optional): Iterable Parameters to be added. Examples: .. code-block:: python diff --git a/python/paddle/nn/layer/norm.py b/python/paddle/nn/layer/norm.py index e01e426a75ff2c..bea68c61d79a9e 100644 --- a/python/paddle/nn/layer/norm.py +++ b/python/paddle/nn/layer/norm.py @@ -894,8 +894,8 @@ class BatchNorm(Layer): - :math:`x` : mini-batch data - :math:`m` : the size of the mini-batch data - When use_global_stats = True, the :math:`\\mu_{\\beta}` - and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch. + When use_global_stats = True, the :math:`\mu_{\beta}` + and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch. They are global or running statistics (moving_mean and moving_variance). It usually got from the pre-trained model. Calculated as follows: @@ -1181,6 +1181,9 @@ class BatchNorm1D(_BatchNormBase): \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \ \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\ + - :math:`x` : mini-batch data + - :math:`m` : the size of the mini-batch data + When use_global_stats = True, the :math:`\mu_{\beta}` and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch. They are global or running statistics (moving_mean and moving_variance). It usually got from the diff --git a/python/paddle/tensor/creation.py b/python/paddle/tensor/creation.py index 528a3c40b9a4b2..1ad7c82c39a37c 100644 --- a/python/paddle/tensor/creation.py +++ b/python/paddle/tensor/creation.py @@ -1065,7 +1065,7 @@ def zeros(shape, dtype=None, name=None): If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape []. If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. dtype(np.dtype|str, optional): Data type of output Tensor, it supports - bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32. + bool, float16, float32, float64, int32 and int64. Default: if None, the data type is float32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.