diff --git a/python/paddle/fft.py b/python/paddle/fft.py index c34177ba96e7f6..47eca6bdc2526e 100644 --- a/python/paddle/fft.py +++ b/python/paddle/fft.py @@ -466,11 +466,14 @@ def ihfft(x, n=None, axis=-1, norm="backward", name=None): >>> spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0]) >>> print(paddle.fft.ifft(spectrum)) Tensor(shape=[6], dtype=complex64, place=Place(cpu), stop_gradient=True, - [(-0.1666666716337204+0j), (1-0j), (2.3333334922790527-0j), (3.5+0j), (2.3333334922790527+0j), (1+0j)]) + [(-0.1666666716337204+0j), (1-0j), + (2.3333334922790527-0j), (3.5+0j), + (2.3333334922790527+0j), (1+0j)]) >>> print(paddle.fft.ihfft(spectrum)) Tensor(shape = [4], dtype = complex64, place = Place(cpu), stop_gradient = True, - [(-0.1666666716337204+0j), (1-0j), (2.3333334922790527-0j), (3.5+0j)]) + [(-0.1666666716337204+0j), (1-0j), + (2.3333334922790527-0j), (3.5+0j)]) """ return fft_r2c(x, n, axis, norm, forward=False, onesided=True, name=name) @@ -680,13 +683,13 @@ def rfftn(x, s=None, axes=None, norm="backward", name=None): >>> # use axes(2, 0) >>> print(paddle.fft.rfftn(x, axes=(2, 0))) - Tensor(shape=[2, 3, 3], dtype=complex64, place=Place(cpu), stop_gradient=True, - [[[(8+0j), 0j , 0j ], - [(8+0j), 0j , 0j ], - [(8+0j), 0j , 0j ]], - [[0j , 0j , 0j ], - [0j , 0j , 0j ], - [0j , 0j , 0j ]]]) + Tensor(shape=[2, 3, 4], dtype=complex64, place=Place(cpu), stop_gradient=True, + [[[(8+0j), 0j , 0j , 0j ], + [(8+0j), 0j , 0j , 0j ], + [(8+0j), 0j , 0j , 0j ]], + [[0j , 0j , 0j , 0j ], + [0j , 0j , 0j , 0j ], + [0j , 0j , 0j , 0j ]]]) """ return fftn_r2c(x, s, axes, norm, forward=True, onesided=True, name=name) @@ -849,11 +852,14 @@ def ihfftn(x, s=None, axes=None, norm="backward", name=None): >>> spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0]) >>> print(paddle.fft.ifft(spectrum)) Tensor(shape=[6], dtype=complex64, place=Place(cpu), stop_gradient=True, - [(-0.1666666716337204+0j), (1-0j), (2.3333334922790527-0j), (3.5+0j), (2.3333334922790527+0j), (1+0j)]) + [(-0.1666666716337204+0j), (1-0j), + (2.3333334922790527-0j), (3.5+0j), + (2.3333334922790527+0j), (1+0j)]) >>> print(paddle.fft.ihfft(spectrum)) Tensor(shape = [4], dtype = complex64, place = Place(cpu), stop_gradient = True, - [(-0.1666666716337204+0j), (1-0j), (2.3333334922790527-0j), (3.5+0j)]) + [(-0.1666666716337204+0j), (1-0j), + (2.3333334922790527-0j), (3.5+0j)]) """ return fftn_r2c(x, s, axes, norm, forward=False, onesided=True, name=name) @@ -1032,7 +1038,7 @@ def rfft2(x, s=None, axes=(-2, -1), norm="backward", name=None): >>> result = paddle.fft.rfft2(x) >>> print(result.numpy()) - [ 50. +0.j 0. +0.j 0. +0.j ] + [[ 50. +0.j 0. +0.j 0. +0.j ] [-12.5+17.20477401j 0. +0.j 0. +0.j ] [-12.5 +4.0614962j 0. +0.j 0. +0.j ] [-12.5 -4.0614962j 0. +0.j 0. +0.j ] @@ -1200,7 +1206,7 @@ def ihfft2(x, s=None, axes=(-2, -1), norm="backward", name=None): >>> ihfft2_xp = paddle.fft.ihfft2(x) >>> print(ihfft2_xp.numpy()) - [[ 2. +0.j 0. +0.j 0. +0.j ] + [[ 2. +0.j 0. -0.j 0. -0.j ] [-0.5-0.68819096j 0. +0.j 0. +0.j ] [-0.5-0.16245985j 0. +0.j 0. +0.j ] [-0.5+0.16245985j 0. +0.j 0. +0.j ] diff --git a/python/paddle/metric/metrics.py b/python/paddle/metric/metrics.py index 806627ac4faf45..f590cf03273e29 100644 --- a/python/paddle/metric/metrics.py +++ b/python/paddle/metric/metrics.py @@ -798,7 +798,8 @@ def accuracy(input, label, k=1, correct=None, total=None, name=None): >>> label = paddle.to_tensor([[2], [0]], dtype="int64") >>> result = paddle.metric.accuracy(input=predictions, label=label, k=1) >>> print(result) - 0.5 + Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, + 0.50000000) """ if label.dtype == paddle.int32: label = paddle.cast(label, paddle.int64) diff --git a/python/paddle/onnx/export.py b/python/paddle/onnx/export.py index 2a216aa6622148..4ed3379d3d1692 100644 --- a/python/paddle/onnx/export.py +++ b/python/paddle/onnx/export.py @@ -62,6 +62,7 @@ def export(layer, path, input_spec=None, opset_version=9, **configs): ... x_spec = paddle.static.InputSpec(shape=[None, 128], dtype='float32') ... paddle.onnx.export(model, 'linear_net', input_spec=[x_spec]) ... + >>> # doctest: +SKIP('raise ImportError') >>> export_linear_net() >>> class Logic(paddle.nn.Layer):