-
Notifications
You must be signed in to change notification settings - Fork 645
/
Copy pathstatic_model.py
122 lines (103 loc) · 4.7 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from net import MultiviewSimnetLayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.query_encoder = self.config.get("hyper_parameters.query_encoder")
self.title_encoder = self.config.get("hyper_parameters.title_encoder")
self.query_encode_dim = self.config.get(
"hyper_parameters.query_encode_dim")
self.title_encode_dim = self.config.get(
"hyper_parameters.title_encode_dim")
self.emb_size = self.config.get("hyper_parameters.sparse_feature_dim")
self.emb_dim = self.config.get("hyper_parameters.embedding_dim")
self.emb_shape = [self.emb_size, self.emb_dim]
self.hidden_size = self.config.get("hyper_parameters.hidden_size")
self.margin = self.config.get("hyper_parameters.margin")
self.query_len = self.config.get("hyper_parameters.query_len")
self.pos_len = self.config.get("hyper_parameters.pos_len")
self.neg_len = self.config.get("hyper_parameters.neg_len")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
def create_feeds(self, is_infer=False):
self.q_slots = paddle.static.data(
name="q_slots", shape=[None, self.query_len], dtype='int64')
self.pt_slots = paddle.static.data(
name="pt_slots", shape=[None, self.pos_len], dtype='int64')
if is_infer:
feeds_list = [self.q_slots, self.pt_slots]
return feeds_list
self.nt_slots = paddle.static.data(
name="nt_slots", shape=[None, self.neg_len], dtype="int64")
feeds_list = [self.q_slots, self.pt_slots, self.nt_slots]
return feeds_list
def net(self, input, is_infer=False):
self.q_slots = [input[0]]
self.pt_slots = [input[1]]
if not is_infer:
self.batch_size = self.config.get("runner.train_batch_size")
self.nt_slots = [input[2]]
inputs = [self.q_slots, self.pt_slots, self.nt_slots]
else:
self.batch_size = self.config.get("runner.infer_batch_size")
inputs = [self.q_slots, self.pt_slots]
simnet_model = MultiviewSimnetLayer(
self.query_encoder, self.title_encoder, self.query_encode_dim,
self.title_encode_dim, self.emb_size, self.emb_dim,
self.hidden_size, self.margin, self.query_len, self.pos_len,
self.neg_len)
cos_pos, cos_neg = simnet_model.forward(inputs, is_infer)
self.inference_target_var = cos_pos
if is_infer:
fetch_dict = {'query_pt_sim': cos_pos}
return fetch_dict
loss_part1 = paddle.subtract(
paddle.full(
shape=[self.batch_size, 1],
fill_value=self.margin,
dtype='float32'),
cos_pos)
loss_part2 = paddle.add(loss_part1, cos_neg)
loss_part3 = paddle.maximum(
paddle.full(
shape=[self.batch_size, 1], fill_value=0.0, dtype='float32'),
loss_part2)
avg_cost = paddle.mean(loss_part3)
self._cost = avg_cost
self.acc = self.get_acc(cos_neg, cos_pos)
fetch_dict = {'Acc': self.acc, 'Loss': avg_cost}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)
def get_acc(self, x, y):
less = paddle.cast(paddle.less_than(x, y), dtype='float32')
label_ones = paddle.full(
dtype='float32', shape=[self.batch_size, 1], fill_value=1.0)
correct = paddle.sum(less)
total = paddle.sum(label_ones)
acc = paddle.divide(correct, total)
return acc