-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTensorOperator.c
156 lines (136 loc) · 5.36 KB
/
TensorOperator.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include "torch/utils.h"
#include "luaT.h"
#include "THZC.h"
static int cutorch_CudaTensorOperator___add__(lua_State *L) {
THCudaTensor *tensor1 = luaT_toudata(L, 1, "torch.CudaTensor");
THCudaTensor *tensor2 = luaT_toudata(L, 2, "torch.CudaTensor");
THCudaTensor *r;
THCState *state = cutorch_getstate(L);
THAssert(THCudaTensor_checkGPU(state, 2, tensor1, tensor2));
if (!tensor1 && !tensor2)
luaL_error(L, "expecting two Tensors or one Tensor and one number");
else {
r = THCudaTensor_new(state);
luaT_pushudata(L, r, "torch.CudaTensor");
if (!tensor1 && tensor2) {
THCudaTensor_resizeAs(state, r, tensor2);
THCudaTensor_copy(state, r, tensor2);
THCudaTensor_add(state, r, r, luaL_checknumber(L, 1));
} else if (tensor1 && !tensor2) {
THCudaTensor_resizeAs(state, r, tensor1);
THCudaTensor_copy(state, r, tensor1);
THCudaTensor_add(state, r, r, luaL_checknumber(L, 2));
} else {
THCudaTensor_resizeAs(state, r, tensor1);
THCudaTensor_copy(state, r, tensor1);
THCudaTensor_cadd(state, r, r, 1, tensor2);
}
}
return 1;
}
static int cutorch_CudaTensorOperator___sub__(lua_State *L) {
THCudaTensor *tensor1 = luaT_toudata(L, 1, "torch.CudaTensor");
THCudaTensor *tensor2 = luaT_toudata(L, 2, "torch.CudaTensor");
THCudaTensor *r;
THCState *state = cutorch_getstate(L);
THAssert(THCudaTensor_checkGPU(state, 2, tensor1, tensor2));
if (!tensor1 && !tensor2)
luaL_error(L, "expecting two Tensors or one Tensor and one number");
else {
r = THCudaTensor_new(state);
luaT_pushudata(L, r, "torch.CudaTensor");
if (!tensor1 && tensor2) {
THCudaTensor_resizeAs(state, r, tensor2);
THCudaTensor_fill(state, r, luaL_checknumber(L, 1));
THCudaTensor_cadd(state, r, r, -1, tensor2);
} else if (tensor1 && !tensor2) {
THCudaTensor_resizeAs(state, r, tensor1);
THCudaTensor_copy(state, r, tensor1);
THCudaTensor_add(state, r, r, -luaL_checknumber(L, 2));
} else {
THCudaTensor_resizeAs(state, r, tensor1);
THCudaTensor_copy(state, r, tensor1);
THCudaTensor_cadd(state, r, r, -1, tensor2);
}
}
return 1;
}
static int cutorch_CudaTensorOperator___unm__(lua_State *L) {
THCudaTensor *tensor = luaT_checkudata(L, 1, "torch.CudaTensor");
THCudaTensor *r;
THCState *state = cutorch_getstate(L);
THAssert(THCudaTensor_checkGPU(state, 1, tensor));
r = THCudaTensor_new(state);
luaT_pushudata(L, r, "torch.CudaTensor");
THCudaTensor_resizeAs(state, r, tensor);
THCudaTensor_copy(state, r, tensor);
THCudaTensor_mul(state, r, r, -1);
return 1;
}
static int cutorch_CudaTensorOperator___mul__(lua_State *L) {
THCudaTensor *tensor1 = luaT_toudata(L, 1, "torch.CudaTensor");
THCudaTensor *tensor2 = luaT_toudata(L, 2, "torch.CudaTensor");
THCudaTensor *r;
THCState *state = cutorch_getstate(L);
THAssert(THCudaTensor_checkGPU(state, 2, tensor1, tensor2));
if (!tensor1 && !tensor2)
luaL_error(L, "expecting two Tensors or one Tensor and one number");
else {
r = THCudaTensor_new(state);
luaT_pushudata(L, r, "torch.CudaTensor");
if (!tensor1 && tensor2) {
THCudaTensor_resizeAs(state, r, tensor2);
THCudaTensor_copy(state, r, tensor2);
THCudaTensor_mul(state, r, r, luaL_checknumber(L, 1));
} else if (tensor1 && !tensor2) {
THCudaTensor_resizeAs(state, r, tensor1);
THCudaTensor_copy(state, r, tensor1);
THCudaTensor_mul(state, r, r, luaL_checknumber(L, 2));
} else {
int dimt = tensor1->nDimension;
int dims = tensor2->nDimension;
if (dimt == 1 && dims == 1)
lua_pushnumber(
L, THCudaTensor_dot(state, tensor1,
tensor2)); /* ok, we wasted r, but who cares */
else if (dimt == 2 && dims == 1) {
THCudaTensor_resize1d(state, r, tensor1->size[0]);
THCudaTensor_zero(state, r);
THCudaTensor_addmv(state, r, 1, r, 1, tensor1, tensor2);
} else if (dimt == 2 && dims == 2) {
THCudaTensor_resize2d(state, r, tensor1->size[0], tensor2->size[1]);
THCudaTensor_zero(state, r);
THCudaTensor_addmm(state, r, 1, r, 1, tensor1, tensor2);
} else
luaL_error(
L, "multiplication between %dD and %dD tensors not yet supported",
tensor1->nDimension, tensor2->nDimension);
}
}
return 1;
}
static int cutorch_CudaTensorOperator___div__(lua_State *L) {
THCudaTensor *tensor = luaT_checkudata(L, 1, "torch.CudaTensor");
THCudaTensor *r;
THCState *state = cutorch_getstate(L);
THAssert(THCudaTensor_checkGPU(state, 1, tensor));
luaL_argcheck(L, lua_isnumber(L, 2), 2, "number expected");
r = THCudaTensor_new(state);
luaT_pushudata(L, r, "torch.CudaTensor");
THCudaTensor_resizeAs(state, r, tensor);
THCudaTensor_copy(state, r, tensor);
THCudaTensor_mul(state, r, r, 1 / lua_tonumber(L, 2));
return 1;
}
static const struct luaL_Reg cutorch_CudaTensorOperator__[] = {
{"__add__", cutorch_CudaTensorOperator___add__},
{"__sub__", cutorch_CudaTensorOperator___sub__},
{"__unm__", cutorch_CudaTensorOperator___unm__},
{"__mul__", cutorch_CudaTensorOperator___mul__},
{"__div__", cutorch_CudaTensorOperator___div__},
{NULL, NULL}};
void zcutorch_ZCudaTensorOperator_init(lua_State *L) {
luaT_pushmetatable(L, "torch.ZCudaTensor");
luaL_setfuncs(L, cutorch_CudaTensorOperator__, 0);
lua_pop(L, 1);
}