-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdata.py
135 lines (113 loc) · 4.18 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import random
import numpy as np
import torch
from grad.utils import fix_len_compatibility
from grad_extend.utils import parse_filelist
class TextMelSpeakerDataset(torch.utils.data.Dataset):
def __init__(self, filelist_path):
super().__init__()
self.filelist = parse_filelist(filelist_path, split_char='|')
self._filter()
print(f'----------{len(self.filelist)}----------')
def _filter(self):
items_new = []
# segment = 200
items_min = 250 # 10ms * 250 = 2.5 S
items_max = 500 # 10ms * 400 = 5.0 S
for mel, vec, pit, spk in self.filelist:
if not os.path.isfile(mel):
continue
if not os.path.isfile(vec):
continue
if not os.path.isfile(pit):
continue
if not os.path.isfile(spk):
continue
temp = np.load(pit)
usel = int(temp.shape[0] - 1) # useful length
if (usel < items_min):
continue
if (usel >= items_max):
usel = items_max
items_new.append([mel, vec, pit, spk, usel])
self.filelist = items_new
def get_triplet(self, item):
# print(item)
mel = item[0]
vec = item[1]
pit = item[2]
spk = item[3]
use = item[4]
mel = torch.load(mel)
vec = np.load(vec)
vec = np.repeat(vec, 2, 0) # 320 VEC -> 160 * 2
pit = np.load(pit)
spk = np.load(spk)
vec = torch.FloatTensor(vec)
pit = torch.FloatTensor(pit)
spk = torch.FloatTensor(spk)
vec = vec + torch.randn_like(vec) # Perturbation
len_vec = vec.size()[0] - 2 # for safe
len_pit = pit.size()[0]
len_min = min(len_pit, len_vec)
mel = mel[:, :len_min]
vec = vec[:len_min, :]
pit = pit[:len_min]
if len_min > use:
max_frame_start = vec.size(0) - use - 1
frame_start = random.randint(0, max_frame_start)
frame_end = frame_start + use
mel = mel[:, frame_start:frame_end]
vec = vec[frame_start:frame_end, :]
pit = pit[frame_start:frame_end]
# print(mel.shape)
# print(vec.shape)
# print(pit.shape)
# print(spk.shape)
return (mel, vec, pit, spk)
def __getitem__(self, index):
mel, vec, pit, spk = self.get_triplet(self.filelist[index])
item = {'mel': mel, 'vec': vec, 'pit': pit, 'spk': spk}
return item
def __len__(self):
return len(self.filelist)
def sample_test_batch(self, size):
idx = np.random.choice(range(len(self)), size=size, replace=False)
test_batch = []
for index in idx:
test_batch.append(self.__getitem__(index))
return test_batch
class TextMelSpeakerBatchCollate(object):
# mel: [freq, length]
# vec: [len, 256]
# pit: [len]
# spk: [256]
def __call__(self, batch):
B = len(batch)
mel_max_length = max([item['mel'].shape[-1] for item in batch])
max_length = fix_len_compatibility(mel_max_length)
d_mel = batch[0]['mel'].shape[0]
d_vec = batch[0]['vec'].shape[1]
d_spk = batch[0]['spk'].shape[0]
# print("d_mel", d_mel)
# print("d_vec", d_vec)
# print("d_spk", d_spk)
mel = torch.zeros((B, d_mel, max_length), dtype=torch.float32)
vec = torch.zeros((B, max_length, d_vec), dtype=torch.float32)
pit = torch.zeros((B, max_length), dtype=torch.float32)
spk = torch.zeros((B, d_spk), dtype=torch.float32)
lengths = torch.LongTensor(B)
for i, item in enumerate(batch):
y_, x_, p_, s_ = item['mel'], item['vec'], item['pit'], item['spk']
mel[i, :, :y_.shape[1]] = y_
vec[i, :x_.shape[0], :] = x_
pit[i, :p_.shape[0]] = p_
spk[i] = s_
lengths[i] = y_.shape[1]
# print("lengths", lengths.shape)
# print("vec", vec.shape)
# print("pit", pit.shape)
# print("spk", spk.shape)
# print("mel", mel.shape)
return {'lengths': lengths, 'vec': vec, 'pit': pit, 'spk': spk, 'mel': mel}