-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
188 lines (156 loc) · 7.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import torch
import numpy as np
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from grad_extend.data import TextMelSpeakerDataset, TextMelSpeakerBatchCollate
from grad_extend.utils import plot_tensor, save_plot, load_model, print_error
from grad.utils import fix_len_compatibility
from grad.model import GradTTS
# 200 frames
out_size = fix_len_compatibility(200)
def train(hps, chkpt_path=None):
print('Initializing logger...')
logger = SummaryWriter(log_dir=hps.train.log_dir)
print('Initializing data loaders...')
train_dataset = TextMelSpeakerDataset(hps.train.train_files)
batch_collate = TextMelSpeakerBatchCollate()
loader = DataLoader(dataset=train_dataset,
batch_size=hps.train.batch_size,
collate_fn=batch_collate,
drop_last=True,
num_workers=8,
shuffle=True)
test_dataset = TextMelSpeakerDataset(hps.train.valid_files)
print('Initializing model...')
model = GradTTS(hps.grad.n_mels, hps.grad.n_vecs, hps.grad.n_pits, hps.grad.n_spks, hps.grad.n_embs,
hps.grad.n_enc_channels, hps.grad.filter_channels,
hps.grad.dec_dim, hps.grad.beta_min, hps.grad.beta_max, hps.grad.pe_scale).cuda()
print('Number of encoder parameters = %.2fm' % (model.encoder.nparams/1e6))
print('Number of decoder parameters = %.2fm' % (model.decoder.nparams/1e6))
# Load Pretrain
if os.path.isfile(hps.train.pretrain):
print("Start from Grad_SVC pretrain model: %s" % hps.train.pretrain)
checkpoint = torch.load(hps.train.pretrain, map_location='cpu')
load_model(model, checkpoint['model'])
hps.train.learning_rate = 2e-5
# fine_tune
model.fine_tune()
else:
print_error(10 * '~' + "No Pretrain Model" + 10 * '~')
print('Initializing optimizer...')
optim = torch.optim.Adam(params=model.parameters(), lr=hps.train.learning_rate)
initepoch = 1
iteration = 0
# Load Continue
if chkpt_path is not None:
print("Resuming from checkpoint: %s" % chkpt_path)
checkpoint = torch.load(chkpt_path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optim.load_state_dict(checkpoint['optim'])
initepoch = checkpoint['epoch']
iteration = checkpoint['steps']
print('Logging test batch...')
test_batch = test_dataset.sample_test_batch(size=hps.train.test_size)
for i, item in enumerate(test_batch):
mel = item['mel']
logger.add_image(f'image_{i}/ground_truth', plot_tensor(mel.squeeze()),
global_step=0, dataformats='HWC')
save_plot(mel.squeeze(), f'{hps.train.log_dir}/original_{i}.png')
print('Start training...')
skip_diff_train = True
if initepoch >= hps.train.fast_epochs:
skip_diff_train = False
for epoch in range(initepoch, hps.train.full_epochs + 1):
if epoch % hps.train.test_step == 0:
model.eval()
print('Synthesis...')
with torch.no_grad():
for i, item in enumerate(test_batch):
l_vec = item['vec'].shape[0]
d_vec = item['vec'].shape[1]
lengths_fix = fix_len_compatibility(l_vec)
lengths = torch.LongTensor([l_vec]).cuda()
vec = torch.zeros((1, lengths_fix, d_vec), dtype=torch.float32).cuda()
pit = torch.zeros((1, lengths_fix), dtype=torch.float32).cuda()
spk = item['spk'].to(torch.float32).unsqueeze(0).cuda()
vec[0, :l_vec, :] = item['vec']
pit[0, :l_vec] = item['pit']
y_enc, y_dec = model(lengths, vec, pit, spk, n_timesteps=50)
logger.add_image(f'image_{i}/generated_enc',
plot_tensor(y_enc.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
logger.add_image(f'image_{i}/generated_dec',
plot_tensor(y_dec.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
save_plot(y_enc.squeeze().cpu(),
f'{hps.train.log_dir}/generated_enc_{i}.png')
save_plot(y_dec.squeeze().cpu(),
f'{hps.train.log_dir}/generated_dec_{i}.png')
model.train()
prior_losses = []
diff_losses = []
mel_losses = []
spk_losses = []
with tqdm(loader, total=len(train_dataset)//hps.train.batch_size) as progress_bar:
for batch in progress_bar:
model.zero_grad()
lengths = batch['lengths'].cuda()
vec = batch['vec'].cuda()
pit = batch['pit'].cuda()
spk = batch['spk'].cuda()
mel = batch['mel'].cuda()
prior_loss, diff_loss, mel_loss, spk_loss = model.compute_loss(
lengths, vec, pit, spk,
mel, out_size=out_size,
skip_diff=skip_diff_train)
loss = sum([prior_loss, diff_loss, mel_loss, spk_loss])
loss.backward()
enc_grad_norm = torch.nn.utils.clip_grad_norm_(model.encoder.parameters(),
max_norm=1)
dec_grad_norm = torch.nn.utils.clip_grad_norm_(model.decoder.parameters(),
max_norm=1)
optim.step()
logger.add_scalar('training/mel_loss', mel_loss,
global_step=iteration)
logger.add_scalar('training/prior_loss', prior_loss,
global_step=iteration)
logger.add_scalar('training/diffusion_loss', diff_loss,
global_step=iteration)
logger.add_scalar('training/encoder_grad_norm', enc_grad_norm,
global_step=iteration)
logger.add_scalar('training/decoder_grad_norm', dec_grad_norm,
global_step=iteration)
msg = f'Epoch: {epoch}, iteration: {iteration} | '
msg = msg + f'prior_loss: {prior_loss.item():.3f}, '
msg = msg + f'diff_loss: {diff_loss.item():.3f}, '
msg = msg + f'mel_loss: {mel_loss.item():.3f}, '
msg = msg + f'spk_loss: {spk_loss.item():.3f}, '
progress_bar.set_description(msg)
prior_losses.append(prior_loss.item())
diff_losses.append(diff_loss.item())
mel_losses.append(mel_loss.item())
spk_losses.append(spk_loss.item())
iteration += 1
msg = 'Epoch %d: ' % (epoch)
msg += '| spk loss = %.3f ' % np.mean(spk_losses)
msg += '| mel loss = %.3f ' % np.mean(mel_losses)
msg += '| prior loss = %.3f ' % np.mean(prior_losses)
msg += '| diffusion loss = %.3f\n' % np.mean(diff_losses)
with open(f'{hps.train.log_dir}/train.log', 'a') as f:
f.write(msg)
# if (np.mean(prior_losses) < 1.05):
# skip_diff_train = False
if epoch > hps.train.fast_epochs:
skip_diff_train = False
if epoch % hps.train.save_step > 0:
continue
save_path = f"{hps.train.log_dir}/grad_svc_{epoch}.pt"
torch.save({
'model': model.state_dict(),
'optim': optim.state_dict(),
'epoch': epoch,
'steps': iteration,
}, save_path)
print("Saved checkpoint to: %s" % save_path)