-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathspline.py
125 lines (103 loc) · 3.31 KB
/
spline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
import numpy as np
from scipy.interpolate import CubicSpline, interp1d
def splcof(x, y, y1p=0.0):
'''
VASP ini.F
!**************** SUBROUTINE SPLCOF, SPLCOF_N0 *************************
! RCS: $Id: ini.F,v 1.3 2002/08/14 13:59:39 kresse Exp $
!
! Subroutine for calculating spline-coefficients
! using the routines of the book 'numerical recipes 3.3'
! on input P(1,N) must contain x-values
! P(2,N) must contain function-values
! YP is the first derivatives at the first point
! if >= 10^30 natural boundary-contitions (y''=0) are used
!
! for point N always natural boundary-conditions are used in
! SPLCOF, whereas SPLCOF_N0 assume 0 derivative at N
! SPLCOF_NDER allows to specify a boundary condition
! at both end points
!
!***********************************************************************
------------------------------------
determination of spline coefficients
------------------------------------
f = ((d*dx+c)*dx+b)*dx+a
between adjacent x - values
result
P-ARRAY
P(I,1) = X(I)
P(I,2) = A(I) = F(I)
P(I,3) = B(I)
P(I,4) = C(I)
P(I,5) = D(I)
y1p > 1E30 --> CubicSpline(bc_type='natural')
y1p = 0 --> CubicSpline(bc_type='clamped')
'''
x = np.asarray(x, dtype=float)
y = np.asarray(y, dtype=float)
assert (x.shape == y.shape) and (x.ndim == 1)
N = x.size
A = np.zeros(N, dtype=float)
B = np.zeros(N, dtype=float)
C = np.zeros(N, dtype=float)
D = np.zeros(N, dtype=float)
A[:] = y[:]
dy = y[1] - y[0]
dx = x[1] - x[0]
if y1p > 0.99E30:
C[0] = 0.0
B[0] = 0.0
else:
C[0] = -0.5
B[0] = (3.0 / dx) * (dy / dx - y1p)
s = (x[1:N-1] - x[0:N-2]) / (x[2:N] - x[0:N-2])
for ii in range(1, N-1):
r = s[ii-1] * C[ii-1] + 2.0
C[ii] = (s[ii-1] - 1.0) / r
B[ii] = (6 * ((y[ii+1] - y[ii]) / (x[ii+1] - x[ii]) -
(y[ii] - y[ii-1]) / (x[ii] - x[ii-1])) /
(x[ii+1] - x[ii-1]) - s[ii-1] * B[ii-1]) / r
C[N-1] = 0.0
B[N-1] = 0.0
for ii in range(N-2, -1, -1):
C[ii] = C[ii] * C[ii+1] + B[ii]
for ii in range(0, N-1):
s = x[ii+1] - x[ii]
r = (C[ii+1] - C[ii]) / 6.0
D[ii] = r/s
C[ii] = C[ii]/2.0
B[ii] = (y[ii+1] - y[ii]) / s - (C[ii] + r) * s
def cubicspline(x0):
'''
Evaluate the
f = ((d*dx+c)*dx+b)*dx+a
between adjacent x - values
'''
assert x0.size > x.size
x0 = np.asarray(x0, dtype=float)
idx = np.floor(x0 / dx).astype(int)
dx0 = x0 - x[idx]
return A[idx] + dx0 * (
B[idx] + dx0 * (
C[idx] + dx0 * D[idx]
)
)
return cubicspline
if __name__ == '__main__':
x = np.arange(10)
y = np.sin(x)
cs = splcof(x, y, 1E30)
CS = CubicSpline(x, y, bc_type='natural')
# CS = interp1d(x, y, kind='cubic')
xs = np.arange(0.0, 9.1, 0.1)
print(CS([0.0, 0.4, 0.3]))
# import matplotlib.pyplot as plt
#
# plt.plot(x, y, 'o')
# plt.plot(xs, cs(xs), ls=':', color='r')
# plt.plot(xs, CS(xs), ls='-', color='b', alpha=0.5)
# plt.plot(xs, np.sin(xs), ls='-', color='k', alpha=0.5)
#
# plt.show()