-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatvisualizer.py
212 lines (169 loc) · 6.32 KB
/
chatvisualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import re
import regex
import pandas as pd
import numpy as np
import emoji
import plotly.express as px
from collections import Counter
import matplotlib.pyplot as plt
from os import path
from PIL import Image
import datetime
import dateconv
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
def startsWithDateAndTimeAndroid(s):
pattern = '^([0-9]+)(\/)([0-9]+)(\/)([0-9]+), ([0-9]+):([0-9]+)[ ]?(AM|PM|am|pm)? -'
result = re.match(pattern, s)
if result:
return True
return False
def startsWithDateAndTimeios(s):
pattern = '^([0-9]+)(\/)([0-9]+)(\/)([0-9]+), ([0-9]+):([0-9]+)[ ]?(AM|PM|am|pm)? -'
result = re.match(pattern, s)
if result:
return True
return False
def FindAuthor(s):
s=s.split(":")
if len(s)==2:
return True
else:
return False
def getDataPointAndroid(line):
splitLine = line.split(' - ')
dateTime = splitLine[0]
date, time = dateTime.split(', ')
message = ' '.join(splitLine[1:])
if FindAuthor(message):
splitMessage = message.split(':')
author = splitMessage[0]
message = ' '.join(splitMessage[1:])
else:
author = None
return date, time, author, message
def getDataPointios(line):
splitLine = line.split('] ')
dateTime = splitLine[0]
if ',' in dateTime:
date, time = dateTime.split(',')
else:
date, time = dateTime.split(' ')
message = ' '.join(splitLine[1:])
if FindAuthor(message):
splitMessage = message.split(':')
author = splitMessage[0]
message = ' '.join(splitMessage[1:])
else:
author = None
if time[5]==":":
time = time[:5]+time[-3:]
else:
if 'AM' in time or 'PM' in time:
time = time[:6]+time[-3:]
else:
time = time[:6]
return date, time, author, message
def split_count(text):
emoji_list = []
data = regex.findall(r'\X', text)
for word in data:
if any(char in emoji.UNICODE_EMOJI for char in word):
emoji_list.append(word)
return emoji_list
parsedData = [] # List to keep track of data so it can be used by a Pandas dataframe
conversationPath = 'Group.txt'
with open(conversationPath, encoding="utf-8") as fp:
device=''
first=fp.readline()
print(first)
if '[' in first:
device='ios'
else:
device="android"
fp.readline()
messageBuffer = []
date, time, author = None, None, None #message contains 4 things-"date","time","author","message"
while True:
line = fp.readline()
if not line:
break
if device=="ios":
line = line.strip()
if startsWithDateAndTimeios(line):
if len(messageBuffer) > 0:
parsedData.append([date, time, author, ' '.join(messageBuffer)])
messageBuffer.clear()
date, time, author, message = getDataPointios(line)
messageBuffer.append(message)
else:
line= (line.encode('ascii', 'ignore')).decode("utf-8")
if startsWithDateAndTimeios(line):
if len(messageBuffer) > 0:
parsedData.append([date, time, author, ' '.join(messageBuffer)])
messageBuffer.clear()
date, time, author, message = getDataPointios(line)
messageBuffer.append(message)
else:
messageBuffer.append(line)
else:
line = line.strip()
if startsWithDateAndTimeAndroid(line):
if len(messageBuffer) > 0:
parsedData.append([date, time, author, ' '.join(messageBuffer)])
messageBuffer.clear()
date, time, author, message = getDataPointAndroid(line)
messageBuffer.append(message)
else:
messageBuffer.append(line)
if device =='android':
df = pd.DataFrame(parsedData, columns=['Date','Time', 'Author', 'Message'])
df["Date"] = pd.to_datetime(df["Date"])
df = df.dropna()
df["emoji"] = df["Message"].apply(split_count)
### Counting number of letters in each message
df["Letter's"] = df['Message'].apply(lambda s : len(s))
### Counting number of word's in each message
df["Word's"] = df['Message'].apply(lambda s : len(s.strip().split(' ')))
URLPATTERN = r'(https?://\S+)'
df['urlcount'] = df.Message.apply(lambda x: re.findall(URLPATTERN, x)).str.len()
### Function to count number of media in chat.
MEDIAPATTERN = r' <Media omitted>'
df['Media_Count'] = df.Message.apply(lambda x : re.findall(MEDIAPATTERN, x)).str.len()
media = np.sum(df.Media_Count)
else:
df = pd.DataFrame(parsedData, columns=['Date', 'Time', 'Author', 'Message']) # Initialising a pandas Dataframe.
df = df.dropna()
df["Date"] = df["Date"].apply(dateconv)
df["Date"] = pd.to_datetime(df["Date"],format='%Y-%m-%d')
df["emoji"] = df["Message"].apply(split_count)
### Counting number of letters in each message
df["Letter's"] = df['Message'].apply(lambda s : len(s))
### Counting number of word's in each message
df["Word's"] = df['Message'].apply(lambda s : len(s.split(' ')))
URLPATTERN = r'(https?://\S+)'
df['urlcount'] = df.Message.apply(lambda x: re.findall(URLPATTERN, x)).str.len()
### Function to count number of media in chat.
MEDIAPATTERN = r'<Media omitted>'
df['Media_Count'] = df.Message.apply(lambda x : re.findall(MEDIAPATTERN, x)).str.len()
media = np.sum(df.Media_Count)
### Adding one more column of "Day" for better analysis, here we use datetime library which help us to do this task easily.
weeks = {
0 : 'Monday',
1 : 'Tuesday',
2 : 'Wednesday',
3 : 'Thrusday',
4 : 'Friday',
5 : 'Saturday',
6 : 'Sunday'
}
df["Day"] = df['Date'].dt.weekday.map(weeks)
# Rearrenging the columns for better understanding.
df = df[['Date', 'Day', 'Time','Author','Message', "emoji", "Letter's", "Word's", 'urlcount', 'Media_Count']]
# Change the datatype of the column "Day"
df['Day'] = df['Day'].astype('category')
# Looking newborn dataset
dfmain = df
total_emojis_list = list([a for b in df.emoji for a in b])
emoji_dict = dict(Counter(total_emojis_list))
emoji_dict = sorted(emoji_dict.items(), key=lambda x: x[1], reverse=True)
emoji_df = pd.DataFrame(emoji_dict, columns=['emoji', 'count'])