-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathranged.py
194 lines (158 loc) · 7.28 KB
/
ranged.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from collections import namedtuple
from itertools import product
import numpy as np
import pandas as pd
import plotly.express as px
Attacker = namedtuple("Attacker", "name a bs dmg dmg_crit keyword")
weapons = [
#Attacker("G Frag", 4, 4, 2, 4, {}),
#Attacker("G Krak", 4, 4, 4, 5, {"ap": 1}),
Attacker("Las", 4, 4, 2, 3, {}),
Attacker("Long-Las", 4, 2, 3, 3, {"mw": 3}),
#Attacker("Flamer", 5, 2, 2, 2, {"torrent": None}),
Attacker("Webber", 4, 3, 2, 2, {"lethal": 5, "stun": None}),
#Attacker("Slugga", 4, 4, 3, 4, {}),
#Attacker("Dakka Shoota", 5, 4, 3, 4, {}), # Re-roll within 6"
#Attacker("Scoped Big Shoota", 6, 3, 2, 2, {"mw": 2}),
#Attacker("G Melta", 4, 4, 6, 3, {"ap": 2, "mw": 4}),
#Attacker("G Plasma (Std)", 4, 4, 5, 6, {"ap": 1}),
#Attacker("G Plasma (Over)", 4, 4, 5, 6, {"ap": 2, "hot": None}),
Attacker("CSM Bolter", 4, 3, 3, 4, {}),
Attacker("CSM Melta", 4, 3, 6, 3, {"ap": 2, "mw": 4}),
#Attacker("CSM Plasma (Std)", 4, 3, 5, 6, {"ap": 1}),
#Attacker("CSM Plasma (Over)", 4, 3, 5, 6, {"ap": 2, "hot": None}),
#Attacker("Blight Launcher", 4, 3, 4, 6, {"ap": 1}),
#Attacker("Plague Spewer", 6, 2, 2, 3, {}),
#Attacker("Shuriken Pistol", 4, 3, 3, 4, {"rending": None}),
Attacker("Shuriken Catapult", 4, 3, 3, 4, {"balanced": None, "rending": None}),
Attacker("Guardian Spear", 4, 2, 3, 5, {"p": 1}),
#Attacker("Sentinel Blade", 4, 2, 3, 4, {"p": 1}),
Attacker("Burst Cannon", 6, 4, 3, 4, {"ceaseless": None}),
Attacker("Fusion Blaster", 4, 4, 6, 3, {"ap": 2, "mw": 4}),
]
Defender = namedtuple("Defender", "name df save wounds keyword")
targets = [
Defender("Trooper Veteran", 3, 5, 7, {}),
Defender("Trooper Veteran (Hardened by War)", 3, 5, 7, {"fnp": 5}),
Defender("Kommando Nob", 3, 4, 13, {}),
Defender("Kommando Dakka Boy", 3, 5, 10, {}),
Defender("Poxwalker", 3, 6, 7, {"fnp": 5}),
Defender("Player", 3, 6, 8, {"invuln": 4}),
Defender("Dire Avenger", 3, 4, 8, {}),
Defender("Ranger", 3, 5, 8, {"camo_cloak": None}),
Defender("Chaos Space Marine", 3, 3, 12, {}),
Defender("Rubric Marine", 3, 3, 12, {"invuln": 5, "all_is_dust": None}),
Defender("Plague Marine", 3, 3, 12, {"fnp": 5}),
Defender("Custodian Guard", 3, 2, 18, {}),
Defender("Custodian Guard (S)", 3, 2, 18, {"invuln": 4}),
]
def simulate_ranged(attacker: Attacker, defender: Defender, cover: bool) -> np.int:
a_rolls = np.random.choice(6, (attacker.a,)) + 1
rerolls = 0
if "relentless" in attacker.keyword:
rerolls = (a_rolls < attacker.bs).sum()
elif "balanced" in attacker.keyword:
if any(a_rolls < attacker.bs):
rerolls = 1
elif "ceaseless" in attacker.keyword:
rerolls = (a_rolls == 1).sum()
if rerolls:
a_rolls = np.concatenate((a_rolls, np.random.choice(6, (rerolls,)) + 1))
if "grav" in attacker.keyword and defender.save <= 3:
to_crit = 4
else:
to_crit = attacker.keyword.get("lethal", 6)
crits = (a_rolls >= to_crit).sum()
hits = (a_rolls >= attacker.bs).sum() - crits
if "ltgb" in attacker.keyword and any(a_rolls == (to_crit - 1)):
hits -= 1
crits += 1
if "rending" in attacker.keyword and crits > 0 and hits > 0:
hits -= 1
crits += 1
if "dakka" in attacker.keyword and crits > 0 and attacker.a - crits - hits > 0:
crits += 1
mws = crits * attacker.keyword.get("mw", 0) + crits * attacker.keyword.get("splash", 0)
df = defender.df
save = defender.save
if "all_is_dust" in defender.keyword and attacker.dmg <= 3:
save = 2
ap = attacker.keyword.get("ap", 0)
if crits and "p" in attacker.keyword:
ap = max(ap, attacker.keyword["p"])
if "invuln" in defender.keyword:
if ap > 0:
# TODO cases where you don't want to take the invuln?
save = defender.keyword["invuln"]
else:
save = min(save, defender.keyword["invuln"])
else:
df -= ap
cover_retained = 0
if cover and "no_cover" not in attacker.keyword:
cover_retained = 2 if "camo_cloak" in defender.keyword else 1
# Cover is limited by df, since AP & P is applied first
# No point in retaining more dice than there were hits, fish for crit saves with the rest
# TODO This could do more to factor in relative dmg of crits vs hits
cover_retained = min(df, cover_retained, hits)
df -= cover_retained
d_rolls = np.random.choice(6, (df,)) + 1
crits_saved = (d_rolls >= 6).sum()
hits_saved = cover_retained + (d_rolls >= save).sum() - crits_saved
saves_to_upgrade = 0
saves_to_downgrade = 0
if attacker.dmg_crit > attacker.dmg * 2:
# prioritize saving crits over hits
saves_to_upgrade = hits_saved
elif attacker.dmg < attacker.dmg_crit <= attacker.dmg * 2:
# prioritize saving hits, then use spare saves to save crits, allowing up to 1 regular hit to go through to save another crit
saves_to_upgrade = max(hits_saved - hits, 0)
if saves_to_upgrade < hits_saved:
saves_to_upgrade += 1
elif attacker.dmg_crit < attacker.dmg:
# melta-like weapons where regular hits are more damage than crits apart from the MW
saves_to_downgrade = min(crits_saved, max(0, hits - hits_saved))
crits_saved -= saves_to_downgrade
hits_saved += saves_to_downgrade
crits -= crits_saved
# Carry extra crit saves down as regular saves
if crits < 0:
hits += crits
crits = 0
converted_critsaves = min(saves_to_upgrade // 2, crits)
crits -= converted_critsaves
hits_saved -= converted_critsaves * 2
# Save remaining regular hits
hits -= hits_saved
if hits < 0:
hits = 0
damage = (mws + crits * attacker.dmg_crit + hits * attacker.dmg)
if "fnp" in defender.keyword:
fnp_rolls = np.random.choice(6, (damage,)) + 1
damage -= (fnp_rolls >= defender.keyword["fnp"]).sum()
return np.int(damage)
if __name__ == "__main__":
all_dfs = []
kill_probs = []
for weapon, target in product(weapons, targets):
shoot = weapon.keyword.get("shoot", 1)
runs = 10000
damage = np.array([simulate_ranged(weapon, target, cover=False) for _ in range(runs * shoot)])
damage = damage.reshape((shoot, runs)).sum(axis=0)
data = pd.DataFrame(damage, columns=["Damage"])
data["W"] = weapon.name
data["T"] = target.name
all_dfs.append(data)
kill_probs.append((len(weapons) - weapons.index(weapon),
targets.index(target)+1,
target.wounds,
(damage >= (target.wounds // 2)).sum() / damage.shape[0],
(damage >= target.wounds).sum() / damage.shape[0]))
print(f"{weapon.name} -> {target.name}: {kill_probs[-1][-2:]}")
df = pd.concat(all_dfs)
fig = px.histogram(df, x="Damage", histnorm="probability", facet_row="W", facet_col="T")
for row, col, x, y_i, y_k in kill_probs:
fig.add_vline(x=x, row=row, col=col, line_color="red", line_dash="dash")
fig.add_hrect(y0=0, y1=y_i, row=row, col=col, fillcolor="yellow", opacity=0.2, layer="below")
fig.add_hrect(y0=0, y1=y_k, row=row, col=col, fillcolor="red", opacity=0.2, layer="below")
fig.show()