-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneon_fwf.py
250 lines (242 loc) · 9.55 KB
/
neon_fwf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def header(file_path):
import pandas as pd
header_df = pd.read_csv(file_path, nrows = 25, header = None)
header_df = header_df[0].str.rsplit(':', expand = True)
file_signature = header_df[1].iloc[0]
global_parameters = float(header_df[1].iloc[1])
file_source_ID = float(header_df[1].iloc[2])
project_ID_GUID = header_df[1].iloc[3]
system_identifier = header_df[1].iloc[4]
generating_software = header_df[1].iloc[5]
file_creation_day_year = header_df[1].iloc[6]
version = float(header_df[1].iloc[7])
header_size = float(header_df[1].iloc[8])
offset_to_pulse_data = float(header_df[1].iloc[9])
number_of_pulses = float(header_df[1].iloc[10])
pulse_format = float(header_df[1].iloc[11])
pulse_attributes = float(header_df[1].iloc[12])
pulse_size = float(header_df[1].iloc[13])
pulse_compression = float(header_df[1].iloc[14])
reserved = float(header_df[1].iloc[15])
number_of_vlrs = float(header_df[1].iloc[16])
number_of_avlrs = float(header_df[1].iloc[17])
scale_factor_t = float(header_df[1].iloc[18])
t_offset = float(header_df[1].iloc[19])
min_T = float(header_df[0].iloc[20].split()[2])
max_T = float(header_df[0].iloc[20].split()[3])
x_scale_factor = float(header_df[1].iloc[21].split()[0])
y_scale_factor = float(header_df[1].iloc[21].split()[1])
z_scale_factor = float(header_df[1].iloc[21].split()[2])
x_offset = float(header_df[1].iloc[22].split()[0])
y_offset = float(header_df[1].iloc[22].split()[1])
z_offset = float(header_df[1].iloc[22].split()[2])
min_x = float(header_df[1].iloc[23].split()[0])
min_y = float(header_df[1].iloc[23].split()[1])
min_z = float(header_df[1].iloc[23].split()[2])
max_x = float(header_df[1].iloc[24].split()[0])
max_y = float(header_df[1].iloc[24].split()[1])
max_z = float(header_df[1].iloc[24].split()[2])
return [x_scale_factor, y_scale_factor, z_scale_factor, x_offset, y_offset, z_offset, file_signature, global_parameters,
file_source_ID, project_ID_GUID, system_identifier, generating_software, file_creation_day_year,
version, header_size, offset_to_pulse_data, number_of_pulses, pulse_format, pulse_attributes,
pulse_size, pulse_compression, reserved, number_of_vlrs, number_of_avlrs, scale_factor_t, t_offset,
min_T, max_T, min_x, max_x, min_y, max_y, min_z, max_z]
def data_extraction(path):
import numpy as np
import pandas as pd
f_asc = pd.read_csv(path, skiprows = 25,header = None, nrows = 8000020) # 100024, 5000010
data = np.array(np.split(f_asc.to_numpy(), np.where(f_asc.to_numpy()[:, 0] == 'P')[0]))[1:]
rtn = []
rtn_all = []
for i in range(len(data)):
for j in range(len(data[i])):
if len(data[i][j][0].split()) > 10:
rtn.append(j)
rtnp = np.array(rtn)
sgm = np.array(np.split(rtnp, np.where(rtnp == 12)[0])[1:])
rtnall = []
xyz_anc = []
xyz_trg = []
frst_lst = []
outg = []
for i in range(len(data)):
an = data[i][3]
trg = data[i][4]
frls = data[i][5]
if sgm[i].shape[0] > 2:
dse = []
for j in range(len(sgm[i]) - 1):
d = data[i][sgm[i][1:][j]]
dse.append(d)
rrr = np.array(dse)
else:
rrr = data[i][sgm[i][1:]]
ou = data[i][sgm[i][:1]]
rtnall.append(rrr)
xyz_anc.append(an)
xyz_trg.append(trg)
frst_lst.append(frls)
outg.append(ou)
rtn_all = np.array(rtnall)
outg = np.array(outg)
tb = []
for i in range(len(rtn_all)):
if len(rtn_all[i]) < 2:
t = np.array(rtn_all[i][0][0].split()).astype(int)
else:
t1 = []
for j in range(len(rtn_all[i])):
by = np.array(rtn_all[i][j][0].split()).astype('int')
t1.append(by)
t = np.array(t1)
tb.append(t)
ob = []
for i in range(len(outg)):
t = np.array(np.sum(outg[i]).split()).astype(int)
ob.append(t)
ouinp = np.array(ob)
rtinp = np.array(tb)
xyz_anc_np = np.array(xyz_anc)
xyz_trg_np = np.array(xyz_trg)
frst_lst_np = np.array(frst_lst)
anch = []
trgt = []
frls = []
for i in range(len(xyz_anc_np)):
ff = np.array(np.squeeze(xyz_anc_np)[i].split()).astype(int)
dd = np.array(np.squeeze(xyz_trg_np)[i].split()).astype(int)
ss = np.array(np.squeeze(frst_lst_np)[i].split()).astype(int)
anch.append(ff)
trgt.append(dd)
frls.append(ss)
anch = np.array(anch)
trgt = np.array(trgt)
frls = np.array(frls)
return ouinp, rtinp, anch, trgt, frls
def georeferencing(path):
import numpy as np
header_ = header(path)
data_extraction_ = data_extraction(path)
x_scl = header_[0]
y_scl = header_[1]
z_scl = header_[2]
x_off = header_[3]
y_off = header_[4]
z_off = header_[5]
x_trg = data_extraction_[3][:, 0] * x_scl + x_off
y_trg = data_extraction_[3][:, 1] * y_scl + y_off
z_trg = data_extraction_[3][:, 2] * z_scl + z_off
x_an = data_extraction_[2][:, 0] * x_scl + x_off
y_an = data_extraction_[2][:, 1] * y_scl + y_off
z_an = data_extraction_[2][:, 2] * z_scl + z_off
dx = (x_trg - x_an) / 1000
dy = (y_trg - y_an) / 1000
dz = (z_trg - z_an) / 1000
first_rtn = data_extraction_[4][:, 0]
lst_rtn = data_extraction_[4][:, 1]
ouinp, rtinp, _, _, _ = data_extraction(path)
ou_zr = []
for i in range(len(ouinp)):
zro = np.zeros(ouinp[i].shape)
ouinp_ = np.c_[ouinp[i], zro]
ou_zr.append(ouinp_)
ou_zrnp = np.array(ou_zr)
rto = []
for i in range(len(rtinp)):
if len(rtinp[i]) > 5:
one = np.ones(rtinp[i].shape)
rtinp_ = np.c_[rtinp[i], one]
else:
rrt0 = []
rrt1 = []
for j in range(len(rtinp[i])):
if j == 0:
ones = np.ones(rtinp[i][j].shape)
tt0 = np.c_[rtinp[i][j], ones]
rrt0.append(tt0)
elif j == 1:
two = np.ones(rtinp[i][j].shape) * 2
tt1 = np.c_[rtinp[i][j], two]
rrt1.append(tt1)
rrt_cncl = []
for k in range(len(rrt0)):
rrt_cnc_ = np.concatenate((rrt0[k], rrt1[k]))
rrt_cncl.append(rrt_cnc_)
rtinp_ = np.array(rrt_cncl)[0]
rto.append(rtinp_)
rto_np = np.array(rto)
conc = []
for i in range(len(ouinp)):
cnc = np.concatenate((ou_zrnp[i], rto_np[i]))
conc.append(cnc)
conc_np = np.array(conc)
x_w, y_w, z_w = [], [], []
for i in range(len(conc_np)):
otg = conc_np[i][conc_np[i][:, 1] == 0]
rtg = conc_np[i][conc_np[i][:, 1] == 1]
rtg1 = conc_np[i][conc_np[i][:, 1] == 2]
ox_ = dx[i] * np.arange(otg.shape[0])
oy_ = dy[i] * np.arange(otg.shape[0])
oz_ = dz[i] * np.arange(otg.shape[0])
x_w_o = x_an[i] + ox_
y_w_o = y_an[i] + oy_
z_w_o = z_an[i] + oz_
frx_ = dx[i] * (first_rtn[i] + np.arange(rtg.shape[0]))
fry_ = dy[i] * (first_rtn[i] + np.arange(rtg.shape[0]))
frz_ = dz[i] * (first_rtn[i] + np.arange(rtg.shape[0]))
frx1_ = dx[i] * (lst_rtn[i] - np.arange(rtg1.shape[0]))
fry1_ = dy[i] * (lst_rtn[i] - np.arange(rtg1.shape[0]))
frz1_ = dz[i] * (lst_rtn[i] - np.arange(rtg1.shape[0]))
x_w_r = x_an[i] + frx_
y_w_r = y_an[i] + fry_
z_w_r = z_an[i] + frz_
x1_w_r = (x_an[i] + frx1_)[::-1]
y1_w_r = (y_an[i] + fry1_)[::-1]
z1_w_r = (z_an[i] + frz1_)[::-1]
x_w_ = np.concatenate((x_w_o, np.concatenate((x_w_r, x1_w_r))))
y_w_ = np.concatenate((y_w_o, np.concatenate((y_w_r, y1_w_r))))
z_w_ = np.concatenate((z_w_o, np.concatenate((z_w_r, z1_w_r))))
x_w.append(x_w_), y_w.append(y_w_), z_w.append(z_w_)
x_w_np = np.concatenate(np.array(x_w))
y_w_np = np.concatenate(np.array(y_w))
z_w_np = np.concatenate(np.array(z_w))
points = np.transpose((x_w_np, y_w_np, z_w_np))
return points
def create_hdf(path, name_hdf):
import numpy as np
import h5py
ouinp, rtinp, anch, trgt, frls = data_extraction(path)
ou_zr = []
for i in range(len(ouinp)):
zro = np.zeros(ouinp[i].shape)
ouinp_ = np.c_[ouinp[i], zro]
ou_zr.append(ouinp_)
ou_zrnp = np.array(ou_zr)
rto = []
for i in range(len(rtinp)):
if len(rtinp[i]) > 5:
one = np.ones(rtinp[i].shape)
rtinp_ = np.c_[rtinp[i], one]
else:
two = np.ones(np.concatenate(rtinp[i]).shape) * 2
rtinp_ = np.c_[np.concatenate(rtinp[i]), two]
rto.append(rtinp_)
rto_np = np.array(rto)
conc = []
for i in range(len(ouinp)):
cnc = np.concatenate((ou_zrnp[i], rto_np[i]))
conc.append(cnc)
conc_np = np.array(conc)
amplitude = np.vstack((conc_np))
prv = 0
idx = [0]
for i in range(len(conc_np)):
shp = conc_np[i].shape[0]
prv += shp
idx.append(prv)
Index = np.array(idx)
XYZ = georeferencing(path)
f = h5py.File(name_hdf, 'w')
f.create_dataset('Amplitude', data = amplitude, dtype='i')
f.create_dataset('Index', data = Index, dtype='i')
f.create_dataset('XYZ', data = XYZ)