-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcoder.c
292 lines (267 loc) · 10.1 KB
/
coder.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*
libllsm2 - Low Level Speech Model (version 2)
===
Copyright (c) 2017-2019 Kanru Hua.
libllsm2 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
libllsm2 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with libllsm. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ciglet/ciglet.h>
#include "llsm.h"
#include "dsputils.h"
#include "constants.h"
// Ooura-fft
void ddct(int, int, FP_TYPE *);
typedef struct {
int order_spec;
int order_bap;
int nfullspec;
int nchannel;
int nhar_e;
int npsd;
FP_TYPE fnyq;
FP_TYPE liprad;
FP_TYPE* psdaxis;
FP_TYPE* melaxis;
FP_TYPE* faxis;
FP_TYPE* apaxis;
} llsm_coder_;
llsm_coder* llsm_create_coder(llsm_container* conf, int order_spec,
int order_bap) {
llsm_coder_* ret = malloc(sizeof(llsm_coder_));
FP_TYPE* fnyq = llsm_container_get(conf, LLSM_CONF_FNYQ);
int* nchannel = llsm_container_get(conf, LLSM_CONF_NCHANNEL);
int* nhar_e = llsm_container_get(conf, LLSM_CONF_MAXNHAR_E);
int* npsd = llsm_container_get(conf, LLSM_CONF_NPSD);
int* nspec = llsm_container_get(conf, LLSM_CONF_NSPEC);
FP_TYPE* liprad = llsm_container_get(conf, LLSM_CONF_LIPRADIUS);
ret -> order_spec = order_spec;
ret -> order_bap = order_bap;
ret -> nfullspec = (nspec[0] - 1) * 2;
ret -> nchannel = nchannel[0];
ret -> nhar_e = nhar_e[0];
ret -> npsd = npsd[0];
ret -> fnyq = fnyq[0];
ret -> liprad = liprad[0];
ret -> faxis = calloc(ret -> nfullspec, sizeof(FP_TYPE));
for(int i = 0; i < ret -> nfullspec; i ++)
ret -> faxis[i] = fnyq[0] * 2 * i / ret -> nfullspec;
ret -> psdaxis = linspace(0, ret -> fnyq, ret -> npsd);
FP_TYPE mel_ceil = freq2mel(ret -> fnyq);
FP_TYPE mel_floor = freq2mel(50);
ret -> melaxis = calloc(nspec[0], sizeof(FP_TYPE));
for(int i = 0; i < nspec[0]; i ++)
ret -> melaxis[i] = mel2freq(
mel_floor + (mel_ceil - mel_floor) * i / nspec[0]);
ret -> apaxis = linspace(0, fnyq[0], order_bap + 1);
return ret;
}
void llsm_delete_coder(llsm_coder* dst_) {
llsm_coder_* dst = (llsm_coder_*)dst_;
if(dst == NULL) return;
free(dst -> psdaxis);
free(dst -> melaxis);
free(dst -> faxis);
free(dst -> apaxis);
free(dst);
}
FP_TYPE* llsm_coder_encode(llsm_coder* c_, llsm_container* src) {
llsm_coder_* c = (llsm_coder_*)c_;
int ns = c -> nfullspec / 2 + 1;
FP_TYPE* enc = calloc(c -> order_spec + c -> order_bap + 3, sizeof(FP_TYPE));
FP_TYPE* f0 = llsm_container_get(src, LLSM_FRAME_F0);
llsm_nmframe* nm = llsm_container_get(src, LLSM_FRAME_NM);
enc[0] = f0[0] > 0; // voicing
enc[1] = f0[0]; // f0
// from scaled frequency axis to full frequency axis
FP_TYPE* spec_psd = interp1(c -> psdaxis, nm -> psd, nm -> npsd,
c -> faxis, ns);
// from intensity to power
for(int j = 0; j < ns; j ++)
spec_psd[j] = exp_2(IN2LOG(spec_psd[j]));
if(f0[0] > 0) {
FP_TYPE* rd = llsm_container_get(src, LLSM_FRAME_RD);
FP_TYPE* vtmagn = llsm_container_get(src, LLSM_FRAME_VTMAGN);
enc[2] = rd[0];
// spectral synthesis
lfmodel gfm = lfmodel_from_rd(rd[0], 1.0 / f0[0], 1.0);
FP_TYPE* lfmagnresp = lfmodel_spectrum(gfm, c -> faxis, ns, NULL);
FP_TYPE* lfmagnf0 = lfmodel_spectrum(gfm, f0, 1, NULL);
FP_TYPE* spec_env = calloc(ns, sizeof(FP_TYPE));
for(int j = 1; j < ns; j ++) {
spec_env[j] = exp_2(DB2LOG(vtmagn[j]))
* lfmagnresp[j] / lfmagnf0[0] * f0[0] / c -> faxis[j];
}
spec_env[0] = spec_env[1];
llsm_lipfilter(c -> liprad, c -> fnyq / ns, ns, spec_env, NULL, 0);
// magnitude to PSD (power distributed over the spacing between harmonics)
for(int j = 1; j < ns; j ++)
spec_env[j] *= spec_env[j] * 44100 / 4 / f0[0];
// total power (harmonics + noise)
for(int j = 0; j < ns; j ++)
spec_psd[j] += spec_env[j];
// convert PSD into BAP
for(int j = 0; j < c -> order_bap; j ++) {
int n0 = j * (ns - 1) / c -> order_bap;
int n1 = (j + 1) * (ns - 1) / c -> order_bap;
FP_TYPE apsum = 0;
for(int k = n0; k < n1; k ++)
apsum += 1 - spec_env[k] / spec_psd[k];
enc[3 + c -> order_spec + j] = apsum / (n1 - n0);
}
free(lfmagnf0);
free(lfmagnresp);
free(spec_env);
} else {
// AP = 1.0
for(int j = 0; j < c -> order_bap; j ++)
enc[3 + c -> order_spec + j] = 1.0;
}
// from power to log intensity
for(int j = 0; j < ns; j ++)
spec_psd[j] = log_2(spec_psd[j]) * 0.5;
// from full linear frequency axis to full mel-frequency axis
FP_TYPE* mel_psd = interp1(c -> faxis, spec_psd, ns, c -> melaxis, ns);
// DCT
ddct(ns - 1, -1, mel_psd);
// IDCT to low-order spectrum
mel_psd[0] *= 0.5;
ddct(c -> order_spec, 1, mel_psd);
// normalize
for(int j = 0; j < c -> order_spec; j ++) {
mel_psd[j] *= 2.0 / (ns - 1);
enc[3 + j] = mel_psd[j];
}
free(spec_psd);
free(mel_psd);
return enc;
}
static llsm_container* llsm_coder_decode(llsm_coder* c_, FP_TYPE* src,
int use_layer1) {
llsm_coder_* c = (llsm_coder_*)c_;
int ns = c -> nfullspec / 2 + 1;
int voicing = src[0] > 0.5;
FP_TYPE f0 = max(20.0, src[1]);
FP_TYPE rd = min(3.0, max(0.02, src[2]));
int nhar = voicing ? c -> fnyq / f0 : 0;
llsm_container* ret = llsm_create_frame(
nhar, c -> nchannel, c -> nhar_e, c -> npsd);
llsm_nmframe* nm = llsm_container_get(ret, LLSM_FRAME_NM);
llsm_container_attach(ret, LLSM_FRAME_RD,
llsm_create_fp(rd), llsm_delete_fp, llsm_copy_fp);
llsm_container_attach(ret, LLSM_FRAME_F0,
llsm_create_fp(f0 * voicing), llsm_delete_fp, llsm_copy_fp);
FP_TYPE* src_spec = src + 3;
FP_TYPE* src_bap = src + 3 + c -> order_spec;
FP_TYPE* mel_psd = calloc(ns, sizeof(FP_TYPE));
FP_TYPE* bap_pad = calloc(c -> order_bap + 1, sizeof(FP_TYPE));
// undo the IDCT
for(int j = 0; j < c -> order_spec; j ++)
mel_psd[j] = src_spec[j] * 0.5 * (ns - 1) * 2.0 / c -> order_spec;
for(int j = c -> order_spec; j < ns; j ++) mel_psd[j] = 0;
ddct(c -> order_spec, -1, mel_psd);
// IDCT to full-order spectrum
mel_psd[0] *= 0.5;
ddct(ns - 1, 1, mel_psd);
for(int j = 0; j < ns - 1; j ++)
mel_psd[j] *= 2.0 / (ns - 1);
mel_psd[ns - 1] = mel_psd[ns - 2];
// band aperiodicity to full aperiodicity
for(int j = 0; j < c -> order_bap; j ++)
bap_pad[j + 1] = src_bap[j];
bap_pad[0] = voicing ? 0 : 1;
FP_TYPE* full_psd = interp1(c -> melaxis, mel_psd, ns, c -> faxis, ns);
FP_TYPE* full_ap = interp1(c -> apaxis, bap_pad, c -> order_bap + 1,
c -> faxis, ns);
for(int j = 0; j < ns; j ++) {
if(voicing) { // post-processing trick to reduce low-frequency noise
FP_TYPE fj = j * c -> fnyq / ns;
if(fj < 500)
full_ap[j] = 1e-3;
else if(fj < 2000)
full_ap[j] = 1e-3 + (full_ap[j] - 1e-3) * (fj - 500) / 1500;
}
// decompose PSD into harmonic magnitude and noise power
full_psd[j] = exp_2(2.0 * full_psd[j]);
FP_TYPE sum_psd = full_psd[j];
FP_TYPE per_psd = sum_psd * (1.0 - full_ap[j]);
full_psd[j] = sqrt(per_psd * f0 * 4 / 44100);
full_ap[j] = sum_psd * full_ap[j];
}
FP_TYPE* full_spec = full_psd; full_psd = NULL;
FP_TYPE* full_noise = full_ap; full_ap = NULL;
// power to log intensity
free(nm -> psd);
nm -> psd = interp1(c -> faxis, full_noise, ns, c -> psdaxis, nm -> npsd);
for(int j = 0; j < nm -> npsd; j ++)
nm -> psd[j] = LOG2IN(log_2(nm -> psd[j]));
if(nhar > 0 && use_layer1) {
llsm_container_remove(ret, LLSM_FRAME_HM);
lfmodel gfm = lfmodel_from_rd(rd, 1.0 / f0, 1.0);
FP_TYPE* lfmagnresp = lfmodel_spectrum(gfm, c -> faxis, ns, NULL);
FP_TYPE* lfmagnf0 = lfmodel_spectrum(gfm, & f0, 1, NULL);
llsm_lipfilter(c -> liprad, c -> fnyq / ns, ns, full_spec, NULL, 1);
// magnitude to log
for(int j = 1; j < ns; j ++)
full_spec[j] = LOG2DB(log_2(full_spec[j]
* c -> faxis[j] / f0 * lfmagnf0[0] / lfmagnresp[j]));
full_spec[0] = full_spec[1];
FP_TYPE* vtmagn = llsm_create_fparray(ns);
FP_TYPE* vsphse = llsm_create_fparray(nhar);
llsm_container_attach(ret, LLSM_FRAME_VTMAGN, vtmagn,
llsm_delete_fparray, llsm_copy_fparray);
llsm_container_attach(ret, LLSM_FRAME_VSPHSE, vsphse,
llsm_delete_fparray, llsm_copy_fparray);
for(int j = 0; j < ns; j ++) vtmagn[j] = full_spec[j];
FP_TYPE* harfreq = linspace(0, nhar * f0, nhar + 1);
free(lfmodel_spectrum(gfm, harfreq + 1, nhar, vsphse));
free(harfreq);
free(lfmagnresp);
free(lfmagnf0);
}
if(nhar > 0 && ! use_layer1) {
llsm_hmframe* hm = llsm_create_hmframe(nhar);
llsm_container_attach(ret, LLSM_FRAME_HM, hm,
llsm_delete_hmframe, llsm_copy_hmframe);
FP_TYPE* harfreq = linspace(0, nhar * f0, nhar + 1);
FP_TYPE* ampl = interp1(c -> faxis, full_spec, ns, harfreq + 1, nhar);
for(int i = 0; i < nhar; i ++)
hm -> ampl[i] = ampl[i];
llsm_lipfilter(c -> liprad, f0, nhar, ampl, NULL, 1);
lfmodel gfm = lfmodel_from_rd(rd, 1.0 / f0, 1.0);
FP_TYPE* vsphse = calloc(nhar, sizeof(FP_TYPE));
// recover vocal tract magnitude response
FP_TYPE* lfmagnresp = lfmodel_spectrum(gfm, harfreq + 1, nhar, vsphse);
for(int i = 0; i < nhar; i ++) {
FP_TYPE vs_ampl = lfmagnresp[i] / (i + 1.0) / lfmagnresp[0];
ampl[i] /= vs_ampl;
}
// compute radiated phase
FP_TYPE* vtphse = llsm_harmonic_minphase(ampl, nhar);
llsm_lipfilter(c -> liprad, f0, nhar, NULL, vtphse, 0);
for(int i = 0; i < nhar; i ++)
hm -> phse[i] = vtphse[i] + vsphse[i];
free(harfreq);
free(ampl);
free(lfmagnresp);
free(vtphse);
}
free(mel_psd);
free(bap_pad);
free(full_spec);
free(full_noise);
return ret;
}
llsm_container* llsm_coder_decode_layer1(llsm_coder* c, FP_TYPE* src) {
return llsm_coder_decode(c, src, 1);
}
llsm_container* llsm_coder_decode_layer0(llsm_coder* c, FP_TYPE* src) {
return llsm_coder_decode(c, src, 0);
}